

Approximating π with Machin's Formula

Dr. Bill Slough

Mathematics and Computer Science Department
Eastern Illinois University
March 19, 2014

- 1680-1751
- English mathematician and astronomer
- Private tutor to Brook Taylor
- Best known for formulas he invented for calculating π

Line drawing from MacTutor History of Mathematics archive

Partial sums

$$
\arctan x=\sum_{j=0}^{\infty} \frac{(-1)^{j} x^{2 j+1}}{2 j+1}
$$

$a_{1}=\frac{x}{1}$	j runs from 0 to 0
$a_{2}=\frac{x}{1}-\frac{x^{3}}{3}$	j runs from 0 to 1
$a_{3}=\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}$	j runs from 0 to 2
$a_{4}=\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}$	j runs from 0 to 3

$$
a_{k+1}=\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+\frac{(-1)^{k} x^{2 k+1}}{2 k+1}
$$

Computing partial sums with a recurrence
$a_{1}=\frac{x}{1}$
$a_{2}=a_{1}-\frac{x^{3}}{3}$
$a_{3}=a_{2}+\frac{x^{5}}{5}$
$a_{4}=a_{3}-\frac{x^{7}}{7}$

$$
a_{k+1}=a_{k}+\frac{(-1)^{k} x^{2 k+1}}{2 k+1}, k \geq 1
$$

Some numerical results

MATLAB code

\% Arguments for atan()
 $x A=1 / 5$;

$x B=1 / 239$;
\% Total number of desired approximations
$\mathrm{n}=10$;
\% atan approximations for xA and xB using just one term
$\mathrm{a}(1)=\mathrm{xA}$;
$\mathrm{b}(1)=\mathrm{xB}$;
\%and the corresponding approximation for pi $\mathrm{p}(1)=16 * \mathrm{a}(1)-4 * \mathrm{~b}(1)$;
\% Improve the approximation by increasing the number of terms used
for $k=1: n-1$
$\mathrm{a}(\mathrm{k}+1)=\mathrm{a}(\mathrm{k})+(-1)^{\wedge} \mathrm{k} * \mathrm{xA}^{\wedge}(2 * \mathrm{k}+1) /(2 * \mathrm{k}+1)$;
$\mathrm{b}(\mathrm{k}+1)=\mathrm{b}(\mathrm{k})+(-1) \wedge \mathrm{k} * \mathrm{xB}^{\wedge}(2 * \mathrm{k}+1) /(2 * \mathrm{k}+1)$;
$\mathrm{p}(\mathrm{k}+1)=16 * \mathrm{a}(\mathrm{k}+1)-4 * \mathrm{~b}(\mathrm{k}+1)$;
end

Summary

- For centuries, mankind has been fascinated with π.
- How can we compute accurate approximations of π ?
- We have observed Machin's formula leads to fast convergence.

