Approximating π with Machin's Formula

Dr. Bill Slough
Mathematics and Computer Science Department
Eastern Illinois University

March 19, 2014

John Machin

- 1680-1751
- English mathematician and astronomer
- Private tutor to Brook Taylor
- Best known for formulas he invented for calculating π

Line drawing from MacTutor History of Mathematics archive

Mathematical underpinnings

Taylor's series for arctangent

$$
\begin{aligned}
\arctan x & =\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \\
& =\sum_{j=0}^{\infty} \frac{(-1)^{j} x^{2 j+1}}{2 j+1}
\end{aligned}
$$

Machin's formula

$$
\pi=16 \arctan \frac{1}{5}-4 \arctan \frac{1}{239}
$$

Partial sums

$$
\begin{aligned}
& \arctan x=\sum_{j=0}^{\infty} \frac{(-1)^{j} x^{2 j+1}}{2 j+1} \\
& \begin{array}{ll}
a_{1}=\frac{x}{1} & j \text { runs from } 0 \text { to } 0 \\
a_{2}=\frac{x}{1}-\frac{x^{3}}{3} & j \text { runs from } 0 \text { to } 1 \\
a_{3}=\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5} & j \text { runs from } 0 \text { to } 2 \\
a_{4}=\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7} \quad j \text { runs from } 0 \text { to } 3 \\
\ldots & \\
a_{k+1}=\frac{x}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+\frac{(-1)^{k} x^{2 k+1}}{2 k+1}
\end{array}
\end{aligned}
$$

Computing partial sums with a recurrence

$$
\begin{gathered}
a_{1}=\frac{x}{1} \\
a_{2}=a_{1}-\frac{x^{3}}{3} \\
a_{3}=a_{2}+\frac{x^{5}}{5} \\
a_{4}=a_{3}-\frac{x^{7}}{7} \\
\ldots \\
a_{k+1}=a_{k}+\frac{(-1)^{k} x^{2 k+1}}{2 k+1}, k \geq 1
\end{gathered}
$$

MATLAB code

Formula

```
% Arguments for atan()
xA = 1/5;
xB = 1/239;
% Total number of desired approximations
n = 10;
% atan approximations for xA and xB using just one term
a(1) = xA;
b(1) = xB;
% ...and the corresponding approximation for pi
p(1) = 16*a(1) - 4*b(1);
% Improve the approximation by increasing the number of terms used
for k = 1:n-1
    a(k + 1) = a(k) + (-1)^k * xA^ (2*k+1)/(2*k+1);
        b}(\textrm{k}+1)=\textrm{b}(\textrm{k})+(-1)^k * xB^(2*k+1)/(2*k+1)
        p(k + 1) = 16*a(k + 1) - 4*b(k + 1);
end
```


Some numerical results

n	$\mathrm{p}(\mathrm{n})$
1	3.18326359832636
2	3.14059702932606
3	3.14162102932503
4	3.14159177218218
5	3.14159268240440
6	3.14159265261531
7	3.14159265362355
8	3.14159265358860
9	3.14159265358984
10	3.14159265358979

Summary

- For centuries, mankind has been fascinated with π.
- How can we compute accurate approximations of π ?
- We have observed Machin's formula leads to fast convergence.

