

 $\begin{array}{c} \text{Approximating} \\ \pi \text{ with Machin's} \\ \text{Formula} \end{array}$

Dr. Bill Slough

Approximating π with Machin's Formula

Dr. Bill Slough

Mathematics and Computer Science Department Eastern Illinois University

March 19, 2014

John Machin

Approximating π with Machin's Formula

- ▶ 1680-1751
- English mathematician and astronomer
- Private tutor to Brook Taylor
- Best known for formulas he invented for calculating π

Line drawing from MacTutor History of Mathematics archive

Mathematical underpinnings

 $\begin{array}{c} \text{Approximating} \\ \pi \text{ with Machin's} \\ \text{Formula} \end{array}$

Taylor's series for arctangent

arctan
$$x = \frac{x}{1} - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
$$= \sum_{j=0}^{\infty} \frac{(-1)^j x^{2j+1}}{2j+1}$$

Machin's formula

$$\pi=16\, {
m arctan}\, {1\over 5}-4\, {
m arctan}\, {1\over 239}$$

Approximating π with Machin's

Formula

Partial sums

 $\arctan x = \sum_{j=0}^{\infty} \frac{(-1)^j x^{2j+1}}{2j+1}$

 $a_{1} = \frac{x}{1} \qquad j \text{ runs from 0 to 0}$ $a_{2} = \frac{x}{1} - \frac{x^{3}}{3} \qquad j \text{ runs from 0 to 1}$ $a_{3} = \frac{x}{1} - \frac{x^{3}}{3} + \frac{x^{5}}{5} \qquad j \text{ runs from 0 to 2}$ $a_{4} = \frac{x}{1} - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} \qquad j \text{ runs from 0 to 3}$...

$$a_{k+1} = \frac{x}{1} - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + \frac{(-1)^k x^{2k+1}}{2k+1}$$

Computing partial sums with a recurrence

Approximating π with Machin's Formula

$$a_{1} = \frac{x}{1}$$

$$a_{2} = a_{1} - \frac{x^{3}}{3}$$

$$a_{3} = a_{2} + \frac{x^{5}}{5}$$

$$a_{4} = a_{3} - \frac{x^{7}}{7}$$

$$a_{k+1} = a_k + \frac{(-1)^k x^{2k+1}}{2k+1}, k \ge 1$$

. . .

Approximating π with Machin's Formula

MATLAB code

```
% Arguments for atan()
xA = 1/5;
xB = 1/239:
% Total number of desired approximations
n = 10;
% atan approximations for xA and xB using just one term
a(1) = xA;
b(1) = xB;
% ...and the corresponding approximation for pi
p(1) = 16*a(1) - 4*b(1);
% Improve the approximation by increasing the number of terms used
for k = 1:n-1
    a(k + 1) = a(k) + (-1)^{k} * xA^{(2*k+1)}/(2*k+1);
    b(k + 1) = b(k) + (-1)^{k} * xB^{(2*k+1)}/(2*k+1);
    p(k + 1) = 16*a(k + 1) - 4*b(k + 1);
end
```


Some numerical results

 $\begin{array}{c} \text{Approximating} \\ \pi \text{ with Machin's} \\ \text{Formula} \end{array}$

n	p(n)
1	3.18326359832636
2	3.14059702932606
3	3.14162102932503
4	3.14159177218218
5	3.14159268240440
6	3.14159265261531
7	3.14159265362355
8	3.14159265358860
9	3.14159265358984
10	3.14159265358979

Summary

Approximating π with Machin's Formula

- For centuries, mankind has been fascinated with π .
- How can we compute accurate approximations of π ?
- ► We have observed Machin's formula leads to fast convergence.