Exercise 2. Use the Intermediate Value Theorem to find an interval of length one that contains a root of the equation. (a) $x^{5}+x=1$ (b) $\sin x=6 x+5$ (c) $\ln x+x^{2}=3$.

Solution, part (a). Let $f_{1}(x)=x^{5}+x-1$. Since $f_{1}(0)=-1$ and $f_{1}(1)=1,[0,1]$ is a suitable interval.

Solution, part (b). Let $f_{2}=\sin x-6 x-5$. Since $f_{2}(-1) \approx 0.15853$ and $f_{2}(0)=-5,[-1,0]$ is a suitable interval.

Solution, part (c). Let $f_{3}=\ln x+x^{2}-3$. Since $f_{3}(1)=-2$ and $f_{3}(2) \approx 1.6931,[1,2]$ is a suitable interval.

Exercise 4. Consider the equations in Exercise 2. Apply two steps of the Bisection Method to find an approximate root within $1 / 8$ of the true root.

Solution, part (a). We will organize our work in the tabular form shown in the textbook:

k	a_{k}	$f\left(a_{k}\right)$	c_{k}	$f\left(c_{k}\right)$	b_{k}	$f\left(b_{k}\right)$
0	0.000	-	0.500	-	1.000	+
1	0.500	-	0.750	-	1.000	+
2	0.750	-	0.875		1.000	+

After two steps, our best estimate for the root is 0.875 .
Solution, part (b). Similar actions are needed here:

k	a_{k}	$f\left(a_{k}\right)$	c_{k}	$f\left(c_{k}\right)$	b_{k}	$f\left(b_{k}\right)$
0	-1.000	+	-0.500	-	0.000	-
1	-1.000	+	-0.750	-	-0.500	-
2	-1.000	+	-0.875		-0.750	-

After two steps, our best estimate for the root is -0.875 .
Solution, part (c). It's more of the same:

k	a_{k}	$f\left(a_{k}\right)$	c_{k}	$f\left(c_{k}\right)$	b_{k}	$f\left(b_{k}\right)$
0	1.000	-	1.500	-	2.000	+
1	1.500	-	1.750	+	2.000	+
2	1.500	-	1.625		1.750	+

After two steps, our best estimate for the root is 1.625 .
Exercise 5. Consider the equation $x^{4}=x^{3}+10$.
(a) Find an interval $[a, b]$ of length one inside which the equation has a solution.
(b) Starting with $[a, b]$, how many steps of the Bisection Method are required to calculate the solution within 10^{-10} ? Answer with an integer.

Solution, part (a). Let $f(x)=x^{4}-x^{3}-10$ and search for a root of $f(x)=0 . f(2)=-2$ and $f(3)=44$, so $[2,3]$ is an interval of length one which traps the root.

Solution, part (b). We know that

$$
\left|x_{c}-r\right|<\frac{b-a}{2^{n+1}}
$$

after n steps. Since our interval has length one, we must solve the inequality

$$
\frac{1}{2^{n+1}} \leq 10^{-10}
$$

looking for the smallest, whole number n. Here are the algebraic details:

$$
\begin{aligned}
\frac{1}{2^{n+1}} & \leq 10^{-10} \\
2^{n+1} & \geq 10^{10} \\
(n+1) \log 2 & \geq 10 \log 10 \\
n+1 & \geq \frac{10 \log 10}{\log 2} \\
n & \geq \frac{10 \log 10}{\log 2}-1 \\
& \approx 32.219
\end{aligned}
$$

Therefore, performing $n=33$ steps guarantees the error tolerance of 10^{-10}.

