Exercise 2. Use the Intermediate Value Theorem to find an interval of length one that contains a root of the equation. (a) $x^5 + x = 1$ (b) $\sin x = 6x + 5$ (c) $\ln x + x^2 = 3$.

Solution, part (a). Let $f_1(x) = x^5 + x - 1$. Since $f_1(0) = -1$ and $f_1(1) = 1$, [0,1] is a suitable interval.

Solution, part (b). Let $f_2 = \sin x - 6x - 5$. Since $f_2(-1) \approx 0.15853$ and $f_2(0) = -5$, [-1, 0] is a suitable interval.

Solution, part (c). Let $f_3 = \ln x + x^2 - 3$. Since $f_3(1) = -2$ and $f_3(2) \approx 1.6931$, [1, 2] is a suitable interval.

Exercise 4. Consider the equations in Exercise 2. Apply two steps of the Bisection Method to find an approximate root within 1/8 of the true root.

Solution, part (a). We will organize our work in the tabular form shown in the textbook:

k	a_k	$f(a_k)$	c_k	$f(c_k)$	b_k	$f(b_k)$
0	0.000	—	0.500	—	1.000	+
1	0.500	—	0.750	—	1.000	+
2	0.750	—	0.875		1.000	+

After two steps, our best estimate for the root is 0.875.

Solution, part (b). Similar actions are needed here:

k	a_k	$f(a_k)$	c_k	$f(c_k)$	b_k	$f(b_k)$
0	-1.000	+	-0.500	—	0.000	_
1	-1.000	+	-0.750	_	-0.500	
2	-1.000	+	-0.875		-0.750	_

After two steps, our best estimate for the root is -0.875.

Solution, part (c). It's more of the same:

k	a_k	$f(a_k)$	c_k	$f(c_k)$	b_k	$f(b_k)$
0	1.000	—	1.500	_	2.000	+
1	1.500	_	1.750	+	2.000	+
2	1.500	_	1.625		1.750	+

After two steps, our best estimate for the root is 1.625.

Exercise 5. Consider the equation $x^4 = x^3 + 10$.

- (a) Find an interval [a, b] of length one inside which the equation has a solution.
- (b) Starting with [a, b], how many steps of the Bisection Method are required to calculate the solution within 10^{-10} ? Answer with an integer.

Solution, part (a). Let $f(x) = x^4 - x^3 - 10$ and search for a root of f(x) = 0. f(2) = -2 and f(3) = 44, so [2,3] is an interval of length one which traps the root.

Solution, part (b). We know that

$$|x_c - r| < \frac{b - a}{2^{n+1}}$$

after n steps. Since our interval has length one, we must solve the inequality

$$\frac{1}{2^{n+1}} \le 10^{-10},$$

looking for the smallest, whole number n. Here are the algebraic details:

$$\frac{1}{2^{n+1}} \le 10^{-10}$$

$$2^{n+1} \ge 10^{10}$$

$$(n+1)\log 2 \ge 10\log 10$$

$$n+1 \ge \frac{10\log 10}{\log 2}$$

$$n \ge \frac{10\log 10}{\log 2} - 1$$

$$\approx 32.219$$

Therefore, performing n = 33 steps guarantees the error tolerance of 10^{-10} .