Eastern Illinois University New Course Proposal CHM 1310G, General Chemistry I

1. Catalog Description

CHM 1310G General Chemistry I. (3-0-3) F,S. Short title: Gen.Chem. I An introduction to fundamental chemical principles and related phenomena. Topics include: atomic and electronic structure, bonding, chemical composition, chemical reactions, gases, stoichiometry, and thermochemistry. CHM 1315G must be taken concurrently. Prerequisite: One year of high school chemistry or credit in CHM 1040G with a grade of C or better. Not recommended for those whose ACT mathematics score is less than 21 without prior completion of or concurrent enrollment in MAT 1271. Writing active.

2. Student Learning Objectives

Goal: EIU students will demonstrate the ability to think critically.

Objectives: Students will:

- a. demonstrate an understanding of the relationship between tabular and graphical data.
- b. demonstrate an understanding of the relationships presented in the graphical presentation of data.
- c. demonstrate an understanding of various physical states of matter.
- d. describe the current model of atomic structure and relate this model to the macroscopic properties of elements and compounds.
- e. use modern bonding theories to rationalize the structures of chemical compounds.
- f. be able to properly write the formulas of chemical compounds.
- g. demonstrate an understanding of chemical reactions at the molecular level.
- h. predict energy changes associated with chemical reactions.
- i. demonstrate a quantitative understanding of chemical reactions.
- i. develop their problem-solving skills.

3. Course Outline

Week 1	Matter and Measurement
	Classification and properties of matter
	Uncertainty in measurement
	Dimensional Analysis in problem solving
Week 2	Atoms, Molecules, and Ions
	Atomic theory of matter and the modern view of atomic structure
	The Periodic Table
	Naming ionic and molecular compounds
Weeks 3 - 4	Stoichiometry: Calculations with Chemical Formulas and Equations
	Writing and balancing chemical equations
	The mole concept
	Quantitative information from chemical equations
Weeks 5 - 6	Aqueous Reactions and Solution Stoichiometry
	General properties of aqueous solutions
	Precipitation, acid-base, and oxidation-reduction reactions
	Calculation of solution concentrations

	Quantitative information from solutions / chemical analyses
	Thermochemistry
Week 7	First Law of Thermodynamics
	Enthalpy and enthalpy of reactions
	Calorimetry and Hess's Law
Weeks 8 - 9	Electronic Structure of Atoms
	Wave and particle nature of light
	Bohr model of the hydrogen atom
	Introduction to quantum chemistry and atomic orbitals
	Electron configurations of elements and relationship to the Periodic Table
Week 10	Periodic Properties of the Elements
	Development of the Periodic Table
	Ionization energy and electron affinity
	Metals, nonmetals, metalloids
	Group trends for various periodic properties of the elements
	Basic Concepts of Chemical Bonding
	Ionic and covalent bonding
	Lewis structures and the octet rule
Week 11	Bond polarity and electronegativity
	Resonance structures and assignment of formal charges
	Exceptions to the octet rule
	Molecular Geometry and Bonding Theories
Week 12	Valence Shell Electron Pair Repulsion Theory (VSEPR)
	Molecular shape
	Polarity of molecules
	Hybrid orbitals and multiple bonds
	Gases
	Characteristics of gases
Week 13	The gas laws and the ideal gas equation
	Gas mixtures and partial pressures
	Kinetic-molecular theory, effusion, diffusion
	Real gases and deviations from ideal gas behavior
Week 14	Intermolecular Forces, Liquids, and Solids
	Phase changes and phase diagrams
	Ion-dipole, dipole-dipole, London Dispersion forces
	Hydrogen bonding
	Vapor pressure
	Structures of solids
Week 15	Properties of Solutions
	Saturated solutions and solubility
	Factors affecting solubility
	Colligative properties (freezing point depression, boiling point elevation,

4. Evaluation of Student Learning

- a. The students will be evaluated by assignment of homework problems and/or quizzes and exams on a regular basis. A comprehensive final exam will also be administered.
- b. The "writing active" designation is justified since many exams and quizzes require both short-answer and problem-solving skills.

5. Rationale

- a. This course fits into the physical science component of the scientific awareness segment. It provides an introduction to the description of matter and fundamental principles that will enable students to more accurately assess scientific information. In addition, the course will strengthen the reasoning ability of the students especially through the application of problem-solving techniques. The application of chemical principles to modern technological problems will also help promote intellectual curiosity.
- b. This course will be taught at the 1000-level because it is an introductory course. Prerequisite: One year of high school chemistry or CHM 1040G with a grade of C or better. Prior completion of or concurrent enrollment in MAT 1271 is recommended for students whose ACT mathematics score is less than 21. CHM 1315G must be taken concurrently with CHM 1310G.
- c. This course will be similar to the current CHM 1310 and will replace it. It will maintain the same curriculum ID as CHM 1310.
- d. This course is required for all options and concentrations in the BS in Chemistry and all minors in chemistry. It is required for all majors in biological sciences, physics, family and consumer sciences dietetics option, industrial technology, clinical laboratory science, engineering, and geology. It is a requirement in the medical professions programs such as pre-dentistry, pre-medicine, and pre-veterinary, as well as the pre-engineering program. It is also a requirement in the earth science with teacher certification and physics with teacher certification minors.

6. Implementation

- a. The course will be assigned initially to the current General Chemistry faculty: Dr. Klarup, Dr. Blitz, Dr. R. Keiter, Dr. McGuire, Dr. Lawrence, Dr. Deakyne, Dr. Marquart, Dr. Sheeran, Dr. Easter, Dr. Furumo.
- b. Textbook: Brown, T.L.; LeMay, H.E., Jr.; Bursten, B.E. *Chemistry: The Central Science*, 8th ed.; Prentice Hall: Upper Saddle River, New Jersey, 2000.
- c. There are no additional costs to the student.
- d. Spring 2001

7. Community College Transfer

A community college course may be judged equivalent to this course.

8. Date approved by the department: $\frac{4}{11}$

9. Date approved by the college curriculum committee: $\frac{4/21/00}{}$

10. Date approved by CAA: <u>10/19/00</u>

Departmental Contact Person: Dr. Doug Klarup (x 6227)