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Talk Overview

I Fractals — Origins and Definition

I Natural Phenomenon

I Motivation for Studying Fractals

I Koch’s Snowflake

I Sierpinski’s Curves

I Mathematics of Fractals

I Resources and Conclusion
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Discovery — Lewis Fry Richardson

I English mathematician, physicist, meteorologist, psychologist,
and pacifist, 1881 – 1953

I Decided to research the relation between the probability of two
countries going to war and the length of their common border

I He observed the coastline paradox: the length of a coastline
depends on the level of detail at which you measure it.

I Empirically, the smaller the unit of measure (e.g., ruler vs
yardstick), the longer the measured length becomes.
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Coastline Paradox

200 KM
Measure
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Measure
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Measure
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Definition

from Google:

Fractal: a curve or geometric figure, each part of which has
the same statistical character as the whole.

Another way of putting it: a fractal is a figure consisting of an
identical motif which repeats on an ever–reducing scale.
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Coastline Fractal
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Chou Romanesco

Fractal forms are complex shapes which look more or less the same
at a wide variety of scale factors, and are everywhere in nature.
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Same Pattern At Macro and Micro Levels
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Another Example — Ferns
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Frost
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Peoria Via Google Earth
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Peoria A Bit Closer. . .
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And Closer Yet. . .
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Mississippi River Via Google Earth
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A Bit Closer. . .
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And Closer Yet. . .
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Some Reasons for Studying Fractals

I An interesting way to teach students to look for and
understand patterns

I Provide practice with fractions and exponents

I Improve problem solving skills in a colorful environment
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More Reasons for Studying Fractals

I Brings visual beauty and art to math and science; allows
creativity

I Student motivation — there’s a lot about fractals they can
understand

I Provides interesting examples of iterative functions and
recursive algorithms
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And Yet More Reasons

I Fractals are useful in modeling structures (such as eroded
coastlines or snowflakes) in which similar patterns recur at
progressively smaller scales, and in describing partly
random or chaotic phenomena such as:

1. crystal growth,

2. fluid turbulence, and

3. galaxy formation.

I They are used to solve real–world problems, for instance in
engineering with Fractal Control of Fluid Dynamics
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Koch Snowflake Rules
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Koch Iterations Over a Triangle
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Koch Curve Math

Iteration 1 2 3 4 n

Number of Segments per Side 1 4 16

Length of Segment 1 1
3

Total Length of Curve 3 4

What is the length of the nth iteration?
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Further Iterations and Combinations of Koch Snowflakes
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Snowflake by Hexagon
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Class Exercise Example

1. The software I use to
create graphics took 4
mouse clicks to change the
color of each of the small
hexagons in the figure at
right. Given that I copied
the red group of hexagons,
how many clicks did it take
to change the colors on the
copies?

2. The drawing program is a
little flakey and tends to
have some problems when I
“mis-click.” If I mis-click

on average once out of
every 10 mouse clicks,
about how many problems
occurred?
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Sierpinski’s Triangle — Iterations 1 & 2
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Sierpinski’s Triangle — Iterations 3 & 4

Carlisle & Van Cleave— 63rd ICTM, October 17—19, 2013

Sierpinski’s Triangle — Iteration 5
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Exploring the Math of Sierpinski’s Triangle

Iteration 1 2 3 4 n

Number of Shaded Triangles Added 1 3

Total Number of Shaded Triangles 1

Area of Smallest Shaded Triangle 1
4

Total Shaded Area 1
4

Assume the original triangle has area 1.
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Possible Student Activities

1. Find a pattern for the number of shaded Triangles added at
each iteration. Determine a formula for the number of shaded
triangles at the nth iteration.

2. Find a pattern for the area of one of the shaded Triangles
added at each iteration. Determine a formula for the area of
one of the added shaded Triangles at the nth iteration.

3. Find a pattern in the values for the total shaded area.
Determine a formula for the total shaded area at the nth

iteration.
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Combining Koch’s Snowflake & Sierpinski’s Triangle
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Consider Pascal’s Triangle
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Color Empty and Even Triangles
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1 Surprise!
Pascal’s Triangle contains Sierpinski’s Triangle

How many more rows to get to another complete Sierpinski Triangle?
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Seemingly Off Topic. . . The Chaos Game
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The Result — Sierpinski’s Triangle!
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That Triangle Is Everywhere!
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Sierpinski’s Carpet

Carlisle & Van Cleave— 63rd ICTM, October 17—19, 2013

Sierpinski’s Quilt
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Math & Sierpinski’s Carpet

Iteration 1 2 3 n

Number of Shaded Squares Added 1 8

Total Number of Shaded Squares 1

Area of Smallest Shaded Square 1
9

Total Shaded Area 1
9

Assume the original square has area 1.
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Pentagon Fractal

Iteration 1 2 3 n

Total Number of Shaded Pentagons 1 5

Number of Unshaded Pentagons 5 25

Total Number of Pentagons 6 30
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Hexagon Fractal

Iteration 1 2 3 n

Total Number of Shaded Hexagons 1 6

Number of Unshaded Hexagons 5 36

Total Number of Hexagons 6 42
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Octagon Fractal

Quad–Koch?
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Another Octagon Fractal

Octo–Carpet?
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Proof Without Words

What is the sum of
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Let us start with one unit, divided into fourths:
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And Keep Shading 1
4 of Successive Regions
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One–fourth of One–fourth
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Ah! I See Where This Is Headed!

The pattern continues to repeat at reduced scale.
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Creeping Forward by Halves
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By Thirds. . .
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Making Your Own Fractals

Spiraling Into A Fractal

Make a doodle, make a fractal!
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Individualized Fractal Name
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How many N’s occur in each iteration? How many A’s?

Carlisle & Van Cleave— 63rd ICTM, October 17—19, 2013

Generating Fractals with Computer Programs

The Julia Set

They don’t have to be complex. . .
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The Julia Map

I To every ordered pair of real values, (a, b), we can associate a
function of two variables — referred to as the Julia Map for
(a, b), and denoted by F(a,b)

I F(a,b) is described by the formula:

F(a,b)(x , y) = ( x2 − y2 + a, 2xy + b ).

I Note: when F(a,b) is given a pair of coordinates, it produces
another pair:

F(a,b)(x , y) = (x ′, y ′)
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Generating Sequences of Points

I For example, if a = −1 and b = 0:

F(−1,0)(x , y) = (x2 − y2 + a, 2xy + b)
= (x2 − y2 + (−1), 2xy + 0)
= (x2 − y2 − 1, 2xy)

I We can start with a point P0 = (x0, y0) and compute the
following sequence of coordinate pairs:

P1 = F(a,b)(P0) = (x1, y1),

P2 = F(a,b)(P1) = (x2, y2),

P3 = F(a,b)(P2) = (x3, y3),

P4 = F(a,b)(P3) = (x4, y4), etc.,
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Julia Map Iteration Examples

The beginning sequences for F(−1,0) and
three different initial points:

Iterations of F(−1,0)(x0, y0)

n F n
(−1,0)(0.5, 0.5) F n

(−1,0)(0.5, 0.0) F n
(−1,0)(1.0, 0.0)

0 (0.5, 0.5) (0.5, 0.0) (1.0,0.0)

1 (-1.0, 0.5) (0.75, 0.0) (0.0,0.0)

2 (-0.25,-1) (0.438,0.0) (-1.0,0.0)

3 (-1.938,0.5) (-0.809, 0.0) (0.0,0.0)

4 (2.504,-1.938) (-0.346, 0.0) (-1.0,0.0)

5 (1.516,-9.703) (-0.880, 0.0) (0.0,0.0)

6 (-92.844,-29.411) (-0.225, 0.0) (-1.0,0.0)
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Two Types of Behaviors

I Starting at (0.5, 0.5), by the sixth iteration the current point
is out in the fourth quadrant of the plane, quite a distance
(relatively) from the origin. Successive iterations will move it
away even faster.

I On the other hand, starting at each of the other two sample
points leads to sequences that stay pretty close to the origin.

I We observe two qualitatively different types of behavior.
The sequence of points P0, P1, P2, P3, . . . either:

1. starts to get farther and farther away from the origin, or

2. the sequence stays pretty close to the origin
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How Colors Are Determined

I The Julia set for (a, b) is the collection of all points in the
plane from which you can start and never get too far away
from the origin by repeated iterations of F(a,b).

I One way to picture these is to color the points in the plane
according to how many iterations it takes, starting from
that point, to get outside a threshold circle.

I The points that don’t get out within a certain, preset
number of iterations are the ones that are in the Julia set and
they are colored black.
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The Results — Using Different Values for a & b
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Repeating Patterns
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Computer Generated Images
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Computer Generated Landscapes
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Making Weeds

Carlisle & Van Cleave— 63rd ICTM, October 17—19, 2013

Changing Parameters Changes The Pattern
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Online Resources

I Vi Hart: vihart.com

also on YouTube (Vihart) and
khanacademy.org/math/vi-hart

I Khan Academy: khanacademy.org

I Amazing Seattle Fractals: fractalarts.com

I Cynthia Lanius:
math.rice.edu/~lanius/frac/index.html

I Shodor: www.shodor.org

I Google is your friend!
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In Conclusion. . .

Thank You!

Sylvia Carlisle Nancy Van Cleave

carlisle@rose hulman.edu nkvancleave@eiu.edu
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