
Approximating π with Machin’s Formula

Bill Slough

March 19, 2014

Mathematical Background

To obtain an approximation for π, we will use two basic facts. First, a Taylor series expansion for
arctangent:

arctanx =
x

1
− x3

3
+
x5

5
− x7

7
+ . . .

=
∞∑
j=0

(−1)jx2j+1

2j + 1

Second, we use Machin’s formula1, which may appear somewhat mysterious:

π = 16 arctan
1

5
− 4 arctan

1

239

Taylor series should be familiar to you from your study of calculus. Machin’s formula is probably
much less familiar to you, and can be derived with the use of trigonometric identities and algebraic
manipulation. We omit those details here, as we plan to focus on the computational aspects of
approximating π.

The Taylor series shown above involves an infinite number of terms, but we can only sum a finite
number of terms with a computer. To more accurately describe the computations to be carried out,
we introduce the following convention: let am be the partial sum consisting of the first m terms of
the series given above. Thus,

a1 =
x

1
j runs from 0 to 0

a2 =
x

1
− x3

3
j runs from 0 to 1

a3 =
x

1
− x3

3
+
x5

5
j runs from 0 to 2

a4 =
x

1
− x3

3
+
x5

5
− x7

7
j runs from 0 to 3

...

In general, observe that ak+1 is the partial sum with k+ 1 terms; in the summation, j runs from 0
to k, giving

ak+1 =
x

1
− x3

3
+
x5

5
− x7

7
+ · · · +

(−1)kx2k+1

2k + 1

1Developed by John Machin(1686–1751), an English astronomer and mathematician.

1



Approximating π with Machin’s Formula 2

Here’s another way to look at this collection of partial sums. Rather than think of each one as
an unrelated summation of terms, we can make use of the similarity of each sum with the one that
preceded it.

a1 =
x

1

a2 = a1 −
x3

3

a3 = a2 +
x5

5

a4 = a3 −
x7

7
...

With the exception of a1, each partial sum can be thought of as a sum consisting of “all but the
last term” followed by “the last term.” In general, for k ≥ 1, we have:

ak+1 = ak +
(−1)kx2k+1

2k + 1

Coding Details

With this background, we can now write a few lines of MATLAB which will compute ten partial
sums, a1 through a10, for the arctangent at x = 1/5:

% Number of desired partial sums

n = 10;

% Where to evaluate arctan

x = 1/5;

% First partial sum

a(1) = x;

% Remaining partial sums

for k = 1:n-1

a(k + 1) = a(k) + (-1)^k * x^(2*k+1)/(2*k+1);

end

For the tenth partial sum, we get a10 = 0.197395559849881, which is remarkably accurate consid-
ering that we used just 10 terms of the Taylor series.

To implement Machin’s idea, we make a few simple modifications to this code. We now evaluate
the arctangent function at two places: xA = 1

5 and xB = 1
239 , saving partial sums in the vectors a

and b. For a given pair ai and bi, we can compute an approximation to π using the Machin formula.
The coding details are shown in Figure 1.

Generating Sensible Output

In most situations, we want to produce output which is clearly identified and has been neatly
formatted. For tabulated data, this means we should have column headings and within each
column, data should be formatted appropriately — integers should appear as integers and floating



Approximating π with Machin’s Formula 3

% Arguments for atan()

xA = 1/5;

xB = 1/239;

% Total number of desired approximations

n = 10;

% atan approximations for xA and xB using just one term

a(1) = xA;

b(1) = xB;

% ...and the corresponding approximation for pi

p(1) = 16*a(1) - 4*b(1);

% Improve the approximation by increasing the number of terms used

for k = 1:n-1

a(k + 1) = a(k) + (-1)^k * xA^(2*k+1)/(2*k+1);

b(k + 1) = b(k) + (-1)^k * xB^(2*k+1)/(2*k+1);

p(k + 1) = 16*a(k + 1) - 4*b(k + 1);

end

Figure 1: Computing ten successive approximations of π using the Machin formula and Taylor
series expansions for arctangent.

point values should appear with an appropriate number of digits. Where appropriate, scientific
notation should be used, especially if the values are very small or very large. For MATLAB, the
formatted print statement (fprintf) is ideal for these needs.

As an example, the n approximations we have computed can be tabulated with the following
loop:

% Tabulate the resulting iterates

fprintf('%3s %18s\n', 'n', 'p(n)')

fprintf('%3s %18s\n', '---', '-----')

for i = 1:n

fprintf('%3d %18.14f\n', i, p(i))

end

The final results are as follows:

n p(n)

--- -----

1 3.18326359832636

2 3.14059702932606

3 3.14162102932503

4 3.14159177218218

5 3.14159268240440

6 3.14159265261531

7 3.14159265362355

8 3.14159265358860

9 3.14159265358984

10 3.14159265358979


