Permutations

A permutation of n distinct objects is an arrangement or ordering of the n objects.

The permutations of the letters “abc” are:

- abc, acb, bac, bca, cab, and cba.

In general we could only use some of the objects.

A r-permutation of n distinct objects is an arrangement using r of the n objects.

The 1-permutations of the letters “abc” are:

- a, b, and c.

The 2-permutations of the letters “abc” are:

- ab, ac, ba, bc, ca, and cb.
How many permutations are there of the letters “abcde”?

Action 1: Pick a letter
Action 2: Pick a letter
Action 3: Pick a letter
Action 4: Pick a letter
Action 5: Pick a letter

Total

5 × 4 × 3 × 2 × 1 = 120 ways
How many permutations are there of the letters “abcde”?

Action 1: Pick a letter 5 ways
Action 2: Pick a letter 4 ways
Action 3: Pick a letter 3 ways
Action 4: Pick a letter 2 ways
Action 5: Pick a letter 1 ways

Total

\[5 \times 4 \times 3 \times 2 \times 1 = 120\] ways
Number of Permutations

How many permutations are there of the letters “abcde”?

<table>
<thead>
<tr>
<th>Action 1:</th>
<th>Pick a letter</th>
<th>5 ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action 2:</td>
<td>Pick a letter</td>
<td>4 ways</td>
</tr>
<tr>
<td>Action 3:</td>
<td>Pick a letter</td>
<td>3 ways</td>
</tr>
<tr>
<td>Action 4:</td>
<td>Pick a letter</td>
<td>2 ways</td>
</tr>
<tr>
<td>Action 5:</td>
<td>Pick a letter</td>
<td>1 ways</td>
</tr>
</tbody>
</table>

Total \[5 \times 4 \times 3 \times 2 \times 1 = 120 \text{ ways} \]
We will see products of the form $5 \times 4 \times 3 \times 2 \times 1$ frequently.

The product of consecutive integers from 1 to some n is called a **factorial** and is denoted $n!$.

$$n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1$$

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

$$0! = 1$$

There are $n!$ permutations of a set of size n.
Number of r-Permutations

How many 3-permutations are there of the letters “abcde”?

Action 1: Pick a letter
Action 2: Pick a letter
Action 3: Pick a letter

Total $= 5 \times 4 \times 3 = 60$ ways

Note that this is like a factorial but we stop before reaching 1.
How many 3-permutations are there of the letters “abcde”?

Action 1: Pick a letter 5 ways
Action 2: Pick a letter 4 ways
Action 3: Pick a letter 3 ways

Total

Note that this is like a factorial but we stop before reaching 1.
How many 3-permutations are there of the letters “abcde”?

Action 1: Pick a letter 5 ways
Action 2: Pick a letter 4 ways
Action 3: Pick a letter 3 ways

Total 5 * 4 * 3 = 60 ways

Note that this is like a factorial but we stop before reaching 1.
How many r-permutations are there of a set of size n?

Action 1: Pick the first item
Action 2: Pick the second item
Action 3: Pick the third item
 ...
Action r: Pick the r^{th} item

Total
How many r-permutations are there of a set of size n?

Action 1: Pick the first item n ways
Action 2: Pick the second item $n - 1$ ways
Action 3: Pick the third item $n - 2$ ways

\[\vdots \]

Action r: Pick the r^{th} item $n - r + 1$ ways

Total

\[n \times (n-1) \times \cdots \times (n-r+1) \]
Number of r-Permutations

How many r-permutations are there of a set of size n?

Action 1: Pick the first item \(n \) ways
Action 2: Pick the second item \(n - 1 \) ways
Action 3: Pick the third item \(n - 2 \) ways

\[\vdots \]
Action \(r \): Pick the \(r^{th} \) item \(n - r + 1 \) ways

Total \(n \times (n - 1) \times \cdots \times (n - r + 1) \)
The number of r-permutations is denoted by $P(n, r)$.

$$P(n, r) = n \ast (n - 1) \ast (n - 2) \ast \cdots \ast (n - r + 1)$$

$$= \frac{n!}{(n-r)!}$$

$P(3, 1) = 3$

$P(3, 2) = 6$

$P(3, 3) = 6$

$P(n, 1) = n$

$P(n, n - 1) = P(n, n) = n!$
How many permutations of the letters “aabc” are there?

Note that we can not distinguish the 2 a’s from one another.

Suppose we could distinguish the a’s then the total number of permutations would be $P(4, 4) = 4! = 24$.

$$\text{aabc, aacb, abac, abca, acab, acba,}$$
$$\text{aabc, aacb, abac, abca, acab, acba,}$$
$$\text{baac, baca, caab, caba, bcaa, cbaa}$$
$$\text{baac, baca, caab, caba, bcaa, cbaa}$$

However, since we cannot tell the a’s apart we have over counted by a factor of $2! = 2$ (the number of permutations of the a’s).

Thus, there are only $\frac{4!}{2!} = 12$ distinguishable permutations of the letters “aabc”.
How many permutations of the letters “systems” are there?

Note that we can not distinguish the 3 s’s from one another.

If we could distinguish the s’s then the total number of permutations would be $P(7, 7) = 7! = 5040$.

However, since we cannot tell the s’s apart we have over counted by a factor of $3! = 6$ (the number of permutations of the s’s).

Thus, there are only $\frac{7!}{3!} = 840$ distinguishable permutations of the letters “systems”.
In general if we have a total of n objects of which n_1 are of one type n_2 of another type, . . . , and n_k of another type, then the number of distinguishable permutations is:

$$\frac{n!}{n_1! \times n_2! \times \cdots \times n_k!}$$

Note $n_1 + n_2 + \cdots + n_k = n$.
Number of Distinguishable Permutations

Suppose a coin is tossed seven times. How many sequences of 4 heads and 3 tails are possible?

This question is asking how many distinguishable permutations are there of “HHHHTTT”.

The are 4 objects of type “head” and 3 objects of type “tail”.

The number of distinguishable permutations is \(\frac{7!}{4! \times 3!} = 35 \).
With permutations order is important.

With combinations we are looking at a subset of the objects.

A \(r \)-combination of \(n \) distinct objects is an unordered selection or “subset” of \(r \) of the objects.

The 2-combinations of the letters “abc” are:
- ab, ac, and bc.

The number of \(r \)-combinations of \(n \) objects is denoted \(C(n, r) \) or \(\binom{n}{r} \).
A \(r \)-permutation can be formed by choosing any \(r \)-combination of the \(n \) objects and then arranging them in some order.

Number of \(r \)-permutations

1. Choose a \(r \)-combination
 - \(C(n, r) \) ways
2. Pick an ordering
 - \(r! \) ways

Total

Thus, \(C(n, r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!} \).
A r-permutation can be formed by choosing any r-combination of the n objects and then arranging them in some order.

Number of r-permutations

Action 1: Choose a r-combination $C(n, r)$ ways
Action 2: Pick an ordering $r!$ ways

Total

Thus, $C(n, r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$.
A r-permutation can be formed by choosing any r-combination of the n objects and then arranging them in some order.

Number of r-permutations

Action 1: Choose a r-combination $C(n, r)$ ways
Action 2: Pick an ordering $r!$ ways

Total

$$P(n, r) = \frac{n!}{(n-r)!}$$

Thus, $C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r!(n-r)!}$.

The Number of r-Combinations
A \(r \)-permutation can be formed by choosing any \(r \)-combination of the \(n \) objects and then arranging them in some order.

Number of \(r \)-permutations

\[
\begin{align*}
\text{Action 1:} & \quad \text{Choose a} \ r\text{-combination} \quad \frac{n!}{r!(n-r)!} \text{ ways} \\
\text{Action 2:} & \quad \text{Pick an ordering} \quad \qua