MAT 2170: Graphic Coordinates Exercise

Introduction

When writing graphics programs, we need to determine the placement of objects in the graphics
window. When we develop Java programs which utilized the acmLibrary graphics tools, we want
to plan ahead and think about a uniform method for placing graphic objects, since it can be
very frustrating to use “trial and error” to do this. What we’re interested in is using scaling and
translation to position graphic objects correctly. These operations require us to do multiplication
and addition by hand, but after we cover Chapter 3, you will be able to solve these problems in a
much better manner.

Preparations

For each exercise, use one of the planning grids provided in this handout to sketch the desired
graphic. For each sketch, provide a full “inventory” of the graphical components and their at-
tributes. For example, if a circle appears, we need to know the following details:

e Where is the “bounding box” for this circle? (x =7, y =7, width =7)
e What color is to be used? (What is the predefined Java color name?)

e Should the circle be filled? (True or false?)

Example Exercise

As an example, consider the graphic shown at the top of the next page. To keep things simple,
we will choose convenient units for the sketch, then scale and translate as necessary to obtain the
actual coordinates we desire. For example, the location and size of each of the circles and rectangles
below has been summarized as a table of x, y, w, and h values. Each square of the grid is considered
to be one unit, representing 20 pixels.

We have used the same conventions of the ACM library to describe the location and size of rectangles
and circles: a rectangle is described by the coordinate (x,y) of its upper-left corner, its width w
and height A. Circles are defined by a square bounding box.

We wish to use a scaling factor of 20 so the larger circle has a diameter of 10 units x 20 or 200
pixels. Observe how the table used for the planning grid has a direct impact on the values used in
the Java program: multiplying each number by 20 provides the necessary scaling.

It is important to realize that, with careful planning, no “trial-and-error” is needed to obtain the
desired graphic image. In this example, the scaled image will be flush to the upper left-hand corner
of the output window. A horizontal and/or vertical translation can be easily obtained by adding
appropriate Ax and Ay values:

MAT 2170: Graphic Coordinates

In—class Practice:

Upper Left GRect

Lower Left GOval

Upper Right GOval

Lower Right GRect

Position & Dimensions | * y | w h
upper-left rectangle 0O 0]10 5
upper-right circle 10 0|5 5
lower-left circle 0 5|10 10
lower-right rectangle 10 5| 5 10
object w h filled? color name
Upper Left GRect
Upper Right GOval
Lower Left GOval 200 200
Lower Right GRect
Axr =5
Ay =10
Original Values T Y w h
upper-left rectangle 0 0 10 5
upper-right circle 10 0 5 5
lower-left circle 0 5 10 10
lower-right rectangle | 10 5 5 10
object w h filled? color name

For use with Lab #2:

DrawHouse - flush to top left corner

Base

Roof - left

Roof - right

Left window

Right window

Door

Doorknob

DrawHouse - moved 4 units right and 5 units down

Base

Roof-left

Roof-right

Left window

Right window

Door

Doorknob

Scaled by 20 x Y

h filled?

color name

Base GRect

Roof-left GLine

Roof-right GLine

Left-window GRect

Right-window GRect

Door GRect

Doorknob GOval

Group Project: Robot / Alien / Bug
Robot Sketch — Flush to Origin Ax =

MAT 2170: Graphic Coordinates

Scaled by 20 T

filled?

color name

Head

AntenaeLeft

EyeLeft

Mouth

Neck

Body

