
MAT 2170: Laboratory 10

Key Concepts

1. Derived classes and inheritance

2. More on methods and animation

Instructions

• Because we will be creating several packages that will be used for more than one assignment, we will
be creating a myLibrary project with several packages inside it as our own library. This week, you’ll
be adding graphics and testing packages, later we’ll add a games package.

As usual, the program projects (PlayPool and Fireworks) should be in a lab10 directory.

• Reminder: you are to do your own work in this course. Sit across the lab table from your friend/s
so you aren’t tempted to look at their code or ask for help before you’ve even thought about a problem.

• The final two exercises, the pool table and the fireworks, are not due until week 12 (two weeks), and
this lab is worth 50 points. This should be a hint to start early, especially since there will be a new
lab next week.

• Part of your grade will depend on how well you document your work with comments. You will need to
expand the comments from those provided, deleting any “replace this code” type comments. Be sure
to include header comments in all files.

• The Square classes are to help you get started. Use them as a basis for the Circle classes, which
are used first in the pool table animation, then expanded for the fireworks. Hence, follow directions
carefully, and make sure you have the Square classes implemented correctly before you copy them to
create the Circle classes.

• When you finish a task, check it off in the box in the margin. If you need to ask for help with a task,
all of the boxes before that task should be checked — meaning you have completed them successfully.

Notes

1. The GPoint class is described both in your book (pages 301–302), and in the online documentation
referenced in this week’s slides.

2. About getWidth() and getHeight():

When these methods have been called in the run() method, the nearest containing class has been the
graphics window. Thus, they returned the width and height of the window (as integers).

When they are used inside other graphics class methods, however, they refer to the width and height
of that object. An example can be seen on page 302 in your text — the GRect class contains its own
getWidth() and getHeight() methods. Since they are public, they can also be accessed by sending
a message to an instance of the class, for example, R.getWidth().

The graphics window(s) belong to the GCanvas class in the acmLibrary. If we need to know the
window’s width or height while we’re inside another graphics class, we need to include the window as
the receiver of the getWidth() or getHeight() message. To make this as straight–forward and the
least time–consuming as we could, the smart classes will know to what GCanvas they belong. This
information is stored in the data member myCanvas.

3. The GCanvas class contains the remove(GObject obj) method, which is directed to a graphics window.
This method erases the given object obj from the window. For example, if ball is a GMovingCircle,
we can use: remove(ball);

MAT 2170: Laboratory 10 2

1 Setting up the directories and projects

1. In your mat2170 directory, create a new project, myLibrary, a Java → Java Class Library. (This
should not be in a labX directory.) Within this project, create two packages by right–clicking on
Source Packages and selecting New → Java package, then naming them:

(a) graphics

(b) testing

2. Add the acmLibrary jar file to the library of project myLibrary.

3. Download GSquare.java, GSmartSquare.java and GMovingSquare.java, placing them in your myLibrary/
src/graphics directory. You should be able to see the source files you downloaded in the myLibrary.graphics
package in NetBeans.

4. Download TestSmartSquare.java, TestMovingSquare.java, TestCircle.java, TestGSpark.java,
and TestGEmitter.java, placing them in your myLibrary/src/testing directory. You should be
able to see the source files you downloaded in the myLibrary.testing package in NetBeans.

5. Within a lab10 directory, create a new project, PlayPool, then download PlayPool.java, and place
it in the default directory. Add the acmLibrary jar file to the library of this project.

6. Create another new project, Fireworks, still in the lab10 directory, then download Fireworks.java

and place it in the default directory of this project. Add the acmLibrary jar file to the library of this
project.

2 Making Squares Smart

7. In the GSmartSquare class, complete the methods overflowsWindowVertically() and fitsInItsWindow().
Be sure to use the “overflows” methods to complete the “fits” method.

8. Add documentation comments for overflowsWindowVertically() and fitsInItsWindow(), and up-
date the header comments.

9. Complete the TestSmartSquare.java program by adding code which changes the square’s color to
red if it extends off the right or left edge, blue if it extends off the top or bottom edge, and yellow if
it extends past both a top or bottom edge and a left or right edge. Make sure your implementations
work by running the TestSmartSquare.java program.

3 Making Squares Move

10. Complete the move() method in the GMovingSquare class so the square bounces off the sides of the
window. Make use of the “overflows” methods, and the GMovingSquare method setDisplacement()

to accomplish the “bounce” effect. Test your work by running the TestMovingSquare.java program.

11. By this point, you have completed, annotated, and tested the GSmartSquare and GMovingSquare

classes. This lays the foundation for nearly identical class based on GOval: the GCircle, GSmartCircle
and GMovingCircle classes.

MAT 2170: Laboratory 10 3

4 Making Circles Move

1. Create GCircle, GSmartCircle and GMovingCircle classes with the same functionality as their Square
counterparts. These classes should be placed in the myLibrary.graphics package. You may find that
copy–paste paired with edit → replace are your friends.

2. In the myLibrary.testing package, create a testing program, TestMovingCircle, for GMovingCircle.
It should function in a manner similar to TestMovingSquare. Make sure your GCircle classes have
been created properly before proceeding.

5 Modify the classes for the Pool Game

1. In preparation for making moving circles which “fall into” pool table pockets and become inactive, we
need to add a few more members to the GCircle class. Be sure to document these methods.

• Add method getRadius() to return the radius of the GCircle object that receives the message.

• Add method getCenter() to return the center coordinates (as a GPoint) of the GCircle object
receiving this message. This method should utilize getRadius() in its implementation.

• Add method captured(GCircle c) to return true when the center point of the parameter
GCircle c is inside the receiver GCircle object and false otherwise. Note that you can cal-
culate the distance between circle centers, then compare that distance to receiver’s radius to
determine whether the receiver has captured c. This method should use both getRadius() and
getCenter() in its implementation.

2. Test your new methods by running TestCircle. The randomly drawn circle should turn red when its
center is inside the black circle at the center of the window, and be green otherwise.

6 Creating the Minimal Game

Pool Table Algorithm

You will be implementing a pool table simulation where pool balls bounce around a table until they
fall into a pocket. The general algorithm which you’ll be implementing in the steps following is:

set activeCount to the slider value

createTable

createPockets

add activeCount poolballs to the window

while there are still active poolballs on the table

for every object in the window

if it’s a poolball

if it’s fallen into a pocket

remove it from the window

decrement activeCount

otherwise

move the poolball

otherwise

ignore it: it’s a pocket, not a poolball

pause

tell user the game is over

MAT 2170: Laboratory 10 4

Setting up the pool table

(a) Inspect the program PlayPool.java. Build and run it. You should see three balls bouncing
around the window. If not, track down the problem.

(b) In PlayPool, implement and then call the method createTable(), to cover the table in green
felt. (It should use a green GRect to make the window appear more like a pool table.)

(c) Add the method createPocket(double x, double y), which will create a black GCircle cen-
tered at the given coordinates and 15% of the window’s width.

(d) In the run() method of PlayPool use createPocket() to create pockets centered on each of
the four corners of the window. The pockets you create should be named, pocket1, pocket2,
pocket3, and pocket4. Add the pockets to the window.

Adding more circles to the game

In this final section for the Pool Table, you will change the program to a SliderProgram, create the
number of balls indicated by the slider, and have them bounce around the window until they fall into a
pocket. Execution should continue as long as there is still at least one active poolball in the window. In
order to accomplish this:

1. Modify PlayPool so it extends SliderProgram, add an init() method which set the window size to
700 by 450, and sets the slider range to 3 – 15. Declare a variable named activeCount which will
store the number of active balls on the table. Initialize activeCount to the slider value. Modify the
loop which adds the balls to the window so it adds activeCount, rather than 3, balls. Test this works.

2. Next, modify PlayPool by adding the method createBall(), which will create and add a poolball to
the window (but not return it since we don’t need to name it). All of the attributes (location, direction
of movement, etc.) should be determined exactly the way they were in the original PlayPool, while
the color should be determined randomly. Modify run() by replacing the body of the loop that adds
the balls with a call to your createBall() method instead. Test this works.

3. In preparation for the next step, add a predicate method to PlayPool which indicates whether a
poolball has been captured by one of the pockets. This method may be simplified by utilizing the
captured() method you added to the GCircle class.

4. Inside the loop that moves the balls check to see if the ball is inside one of the pockets. If it is, remove
it from the window and decrement activeCount. Otherwise move the ball. In other words implement
the algorithm:

if ball is inside one of the pockets

remove ball

decrement activeCount

else

move ball

5. Currently the program moves the balls MAX_MOVES times. Modify the program so it halts when all the
moving circles have fallen into a pocket.

Creating Fireworks

1. Derive a new class from the GMovingCircle class, GSpark, which acts like a spark from a fire,
gradually sinking down the window and extinguishing itself. GSpark.java should be created in the
myLibrary.graphics package.

MAT 2170: Laboratory 10 5

This class should have a new data member, lifetime, which indicates the number of moves allotted to
the object before it should remove itself from the window. In addition, several constants will be useful.

The class will need a constructor, and will need to override the move() method as follows:

• If the spark goes out the top or bottom of its window, it should be removed.

• If the spark has used up all its lifetime moves, it should be removed.

• If the spark is still active

(a) Slow down movement in the x direction to 85% of the previous ∆x.

(b) If the spark is headed upward, slow it down by setting ∆y to 75% of its previous value,
otherwise replace ∆y with |∆y| × 1.25 (to speed up it’s movement toward the bottom of the
window).

(c) Make it move and decrement the lifetime

Don’t forget to document your code.

2. Test your GSpark class with the TestGSpark.java program. Track down any errors and fix them
before continuing.

3. Create a new class, not derived from another class, GEmitter, in the myLibrary.graphics package.
This class will have a constructor and a pulse() method which pumps out GSparks, making it look
like a sparkler.

GEmitter requires storage for: its position in the window, the number of sparks to emit, the color all
the sparks it creates should be, what GCanvas it is associated with, and the maximum lifetime for the
sparks it will create. A constructor should initialize all these data members. In addition, the object
should have its own random generator object.

4. Add a pulse() method to the GEmitter class to produce the number of GSparks it is suppose to,
where:
Sparks will be restricted to having:

• a radius of 1, 2, or 3

• a lifetime of at least 25 moves up to the maximum lifetime this emitter is allowed

• a ∆x in the range −20.0 to 20.0

• a ∆y in the range −10 to −100.

(a) If ∆y < −75, decrease ∆x to 65% of itself.

(b) If the y position of the emitter is within 150 pixels from the top of the window, add 50 to ∆y

• and the same color all the other sparks from this emitter has

5. Test your GEmitter class using TestGEmitter.java. Fix any problems before continuing. Don’t forget
to document your code.

6. Complete the Fireworks.java program by:

(a) Filling the window with a black background

(b) In five percent of the passes through the loop to move GSparks, create a GEmitter and make it
pulse. The number of sparks it should create is based on SliderA, and the upper bound on the
lifetime of one of its sparks is based on 10 * SliderB. The position of the emitter should be no
closer than 10 pixels from a left or right edge, and 30 from the top or bottom of the window. The
color it is to emit should be randomly chosen from red, yellow, blue green, orange, and magenta.

Be sure you have added header comments and updated block comments in all files to reflect any changes
made, and that your name is in the header comments in all files. If you wish to add innovations, we
encourage you to do so.

MAT 2170: Laboratory 10 6

Finishing Up

1. Print the circle, pool, and fireworks files as listed below, staple them together in the order listed,
and hand in at the beginning of Lab 12:

(a) PlayPool

(b) Fireworks

(c) GSpark

(d) GEmitter

(e) GCircle

(f) GSmartCircle

(g) GMovingCircle

2. Submit electronic copies of both your myLibrary project (with the graphics and testing packages)
and lab10 directory.

3. To publish the PlayPool and Fireworks programs to your web site, you’ll first need to move a copy of
the myLibrary.jar file to your www directory. See the handout from Week 1 when we did this with the
acmLibrary.jar file. Then publish these projects to your web site. Let me know if you have difficulty.

7 Appendix

7.1 GSquare Class Outline

The GSquare class has been completed for you, but you will still want to familiarize yourself with its
contents and the method implementations.

public class GSquare extends GRect

{ // Constructors:

public GSquare(double x, double y, double size, Color color)...

public GSquare(double x, double y, double size)... // default color is black

public GSquare(double size)... // default location 0.0, 0.0, and black

// The following force the GSquare to maintain its square shape when resized.

// setSize() and setBounds() override parent methods

public void setSize(double size)...

public void setSize(double width, double height)... // choose smaller for size

public void setBounds(double x, double y, double width, double height)...

public void setBounds(double x, double y, double size)...

}

7.2 GSmartSquare Class Outline

The constructors have been completed, but other member methods will need to be completed or added.
Familiarize yourself with the constructors of this class, noting that the data member must be initialized.

public class GSmartSquare extends GSquare

{ // Data member

protected GCanvas myCanvas; // what window this object belongs to

MAT 2170: Laboratory 10 7

// Constructors

public GSmartSquare(double x, double y, double size, Color color, GCanvas screen)...

public GSmartSquare(double x, double y, double size, GCanvas screen)...

public GSmartSquare(double size, GCanvas screen)...

// The methods that make this object "smart":

public boolean overflowsWindowHorizontally()

{ // Make sure that we have a canvas. If not there is nothing for us to overflow,

// otherwise, check our left and right edges against the window.

if (myCanvas == null)

return false;

return (getX() < 0.0) || (getX() + getWidth() > myCanvas.getWidth());

}

public boolean overflowsWindowVertically()

{ /***

* replace code here

***/

return false; // <== only here to prevent red complaints from Netbeans

}

public boolean fitsInItsWindow()

{ /***

* replace code here. ** Make sure to utilize the above two methods. **

***/

return false; // <== only here to prevent red complaints from Netbeans

}

}

7.3 GMovingSquare Class Outline

public class GMovingSquare extends GSmartSquare

{ // Data member

private GPoint displacement; // speed and direction of movement

// Constructors

public GMovingSquare(double x, double y, double size, Color color,

double deltax, double deltay, GCanvas screen)...

public GMovingSquare(double size, Color color,

double deltax, double deltay, GCanvas screen)...

// default position: 0.0, 0.0

// Inspector for displacement

public GPoint getDisplacement()...

// Mutators for displacement

public void setDisplacement(GPoint displacement)...

public void setDisplacement(double x, double y)...

/* Moves the GMovingSquare according to the object’s own displacement. */

public void move()

MAT 2170: Laboratory 10 8

{ /***

* add code here to modify displacement when necessary to "bounce"

***/

// move as usual

move(displacement.getX(), displacement.getY());

}

}

7.4 Contents of PlayPool.java

Contents of PlayPool.java

1 /*

2 * Header comments go here

3 */

4
5 import acm.graphics.*;

6 import acm.program.*;

7 import acm.util.*;

8 import java.awt.*;

9 import myLibrary.graphics.*;

10
11 public class PlayPool extends GraphicsProgram

12 {

13
14 public void run()

15 {

16 // Add 3 circles

17 for (int i = 0; i < 3; i++)

18 {

19 // Choose the "corner" of the circle

20 double x = rgen.nextDouble(0, getWidth() - SIZE);

21 double y = rgen.nextDouble(0, getHeight() - SIZE);

22
23 // Initial direction of movement

24 double angle = rgen.nextDouble(0.0, 2 * Math.PI);

25
26 // Get the "speed" of movement

27 double speed = rgen.nextDouble(MINIMUM_SPEED, MAXIMUM_SPEED);

28
29 // Set up motion as determined by direction and speed

30 double deltax = speed * Math.cos(angle);

31 double deltay = speed * Math.sin(angle);

32
33 // Draw the new moving circle

34 add(new GMovingCircle(x, y, SIZE, rgen.nextColor(), deltax, deltay));

35 }

36
37 // Make MAX_MOVES number of moves

38 for (int i = 0; i < MAX_MOVES; i++)

39 {

40 // For every object in our window...

41 for (int j = 0; j < getElementCount(); j++)

42 {

43 // the jth object

44 GObject gObject = getElement(j);

45

MAT 2170: Laboratory 10 9

46 // Make sure it is a moving circle

47 if (gObject instanceof GMovingCircle)

48 {

49 // Since we have a circle we cast it as such.

50 GMovingCircle ball = (GMovingCircle) gObject;

51
52 /***

53 * Add and modify code here to remove the ball from the window if

54 * it has been captured by a pocket.

55 ***/

56 ball.move();

57 }

58 }

59 pause(SLEEPTIME);

60 }

61 }

62 // CONSTANT AND GLOBAL OBJECTS DECLARATION SECTION

63
64 // A delay time for animation

65 private static final double SLEEPTIME = 20;

66 // Number of moves to make

67 private static final int MAX_MOVES = 1000;

68 // attributes of a pool ball:

69 // size of a pool ball

70 private static final double SIZE = 35;

71 // Bounds on pool ball velocity

72 private static final double MINIMUM_SPEED = 5;

73 private static final double MAXIMUM_SPEED = 10;

74 // A random generator object

75 private RandomGenerator rgen = RandomGenerator.getInstance();

76 }

7.5 Contents of Fireworks.java

Contents of Fireworks.java

1 /*

2 * Header comments go here

3 */

4 import myLibrary.graphics.*;

5 import acm.graphics.*;

6 import acm.program.*;

7 import acm.util.*;

8 import java.awt.*;

9
10 public class Fireworks extends DualSliderProgram

11 {

12 public void init()

13 {

14 setSize(1000, 700);

15 super.init();

16 setRangeA(0, 250); // rate of spark creation per iteration

17 setRangeB(1, 5); // upper range of spark lifetime * 10

18 }

19
20 public void run()

21 {

MAT 2170: Laboratory 10 10

22 // allows window to be closed

23 if (hasRunBeenPressed())

24 {

25 // Add code here to make black background

26
27 // Produce fireworks until user tires of them

28 while (true)

29 {

30 // Add code here such that in 5% of the of passes of this loop,

31 // a GEmitter object is created and its pulse() method is invoked

32
33
34 // Move all GSparks in the window

35 // For every object in our window...

36 for (int j = 0; j < getElementCount(); j++)

37 {

38 // Get the jth object

39 GObject gObject = getElement(j);

40
41 // Make sure it is a GSpark

42 if (gObject instanceof GSpark)

43 {

44 // Since we have a GSpark, cast it as such and move it.

45 ((GSpark) gObject).move();

46 }

47 }

48 pause(SLEEPTIME);

49 }

50 }

51 } // end of run()

52
53 // CONSTANT AND GLOBAL OBJECTS DECLARATION SECTION

54 // pause time for animation

55 private static final int SLEEPTIME = 50;

56
57 // Random generator used to vary GEmitter and GSpark attributes

58 RandomGenerator rgen = RandomGenerator.getInstance();

59
60 public static void main(String args[])

61 {

62 (new Fireworks()).start();

63 }

64 } // end of Fireworks program class

