
MAT 2170: Laboratory 12

Key Concepts
1. char and the Character class of static methods

2. String Class and its messages

3. Writing a class from scratch

Exercises
Design first, then implement. Come to lab with an outlined solution for each exercise, along with
test cases and expected results for the Palindrome problem. Plan ahead.

1. Exercise 7, page 287. Sentence Palindrome. Create as a project in a lab12 folder.
Create and utilize these methods:

(a) cleanString() — removes all non-alphabetic characters
(b) Reverse() — reverses a string
(c) isPalindrome() — determines whether a string is a palindrome

Notes:

• In order to receive credit, your program must be modular — i.e., decomposed into logical sections
and methods.

• The program is to process multiple inputs — use an empty string to signal end of input.
• When the user indicates they are finished, thank them for using your program and note that it

has completed execution.

2. Suppose we are doing research and need to keep track of temperature data where some of our data will
be in degrees Celsius and some will be in degrees Fahrenheit. You are to write a Temperature class
that can store, compare, add, and display such data. In a turn–about, we are providing the program,
you are to write the class (from scratch — not derived from another class).

In the lab12 folder, create a TestTemperature project. Add the acmLibrary.jar and the myLibrary

project to the libraries.

Create an empty java file named TestTemperature.java in this project, then copy and paste the
file contents from the website into this file and save it. You will find that much of this program is
commented out to help you test your methods as you add them to the Temperature class, rather than
all at once. As you complete methods, move the start of the comment (/*) further down the program.

Next, create a util package in the myLibrary project. In this package create a new empty Java file,
Temperature.java. This file is where you’ll place the implementation of your Temperature class.

Your class should have three data members: a temperature value, a temperature scale, and a numeric
formatter (to be used in the toString() method). Store the scale as a char, using ’C’ for Celsius and
’F’ for Fahrenheit. Do not allow any other characters to be used as the scale – default to ’C’ if the scale
isn’t ’C’ or ’F’. Use a double to store value. Copy the DecimalFormat (line #117 in the appendix)
from TestTemperature.java into your class, just after you declare the other data members. Be sure
to add import java.text.DecimalFormat; at the beginning of the file.

The Temperature class must include:

• Four constructor methods, all of which must be completed before the test program will execute
correctly:

– one for each instance variable (assume zero degrees if no value is specified and Celsius if no
scale is specified)

– one with two parameters for the two instance variables

– a default constructor (no parameters) set to zero degrees Celsius.

• Two inspector methods to return the temperature as either Celsius or Fahrenheit:

– getDegreesC() to return the temperature in degrees Celsius

– getDegreesF() to return the temperate in degrees Fahrenheit.

Use the following formulas to write these methods:



MAT 2170: Laboratory 12 2

degreesC =
5 (degreesF− 32)

9
degreesF =

(
9 ∗ degreesC

5

)
+ 32

• Three mutator methods: one to set the value, setValue(), one to set the scale (’F’ or ’C’ only –
default to ’C’ if anything else is provided), setScale(), and one to set both, setTemperature();

• Three comparison methods:

– isEqual() — tests whether the parameter and receiver temperatures are equivalent

– isLess() — tests whether the receiver’s temperature is less than that of the parameter

– isGreater() — tests whether the receiver’s temperature is larger than that of the parameter

• A toString() method which returns a String with the value, " Degrees ", and its scale. The
value is to be rounded to hundredths – two numbers after the decimal point. For example, 123.46
Degrees F.

• And finally, an add() method which returns the sum of the Temperature object receiving the
add() message and a Temperature parameter — resulting in a Temperature object (in Celsius).

Be sure to check that your output is correct by comparing it to the following:

Finishing Up
1. Publish both projects on your web site, updating the myLibrary.jar file in www.
2. Electronically submit the lab folder and your myLibrary project.
3. Turn in a printout of your sentence palindrome program and your Temperature class (no need to print

the test file).

Appendix

Contents of TestTemperature.java



MAT 2170: Laboratory 12 3

1 import util.*;

2 import acm.program.*;

3 import java.lang.*;

4 import java.text.DecimalFormat;

5 public class TestTemperature extends DialogProgram {

6 public void run() {

7 //create a single string to output to a dialog box

8 String results = "The constructor TEST results are:\n";

9
10 // Testing constructors and setting up for various tests

11 Temperature T0 = new Temperature();

12 Temperature T1 = new Temperature(0.0);

13 Temperature T2 = new Temperature(’C’);

14 Temperature T3 = new Temperature(0.0, ’C’);

15 Temperature T4 = new Temperature(-40.0, ’C’);

16 Temperature T5 = new Temperature(-40.0, ’F’);

17 Temperature T6 = new Temperature(0.0, ’C’);

18 Temperature T7 = new Temperature(32.0, ’F’);

19 Temperature T8 = new Temperature(100.0, ’C’);

20 Temperature T9 = new Temperature(212.0, ’F’);

21 Temperature Bad1 = new Temperature(100.0,’K’);

22 Temperature Bad2 = new Temperature(’M’);

23
24 // Test that 0 degrees Celsius same no matter how created; also tests isEquals()

25 if (T0.isEqual(T1))

26 results += "Default and double (zero) -- OKAY\n";

27 else

28 results += "Default and double (zero) failed equals\n";

29
30 /* if (T0.isEqual(T2))

31 results += "Default and ’C’ (zero) -- OKAY\n";

32 else

33 results += "Default and ’C’ (zero) failed equals\n";

34
35 if (T0.isEqual(T3))

36 results += "Default and two-param (zero) -- OKAY\n";

37 else

38 results += "Default and two-param (zero) failed equals\n";

39
40 if (Bad2.isEqual(T3))

41 results += "Bad scale replaced with ’C’, one-param -- OKAY\n";

42 else

43 results += "Bad scale in constructor, one-param -- FAILED\n";

44
45 if (Bad1.isEqual(T8))

46 results += "Bad scale replaced with ’C’, two-param -- OKAY\n";

47 else

48 results += "Bad scale in constructor, two-param -- FAILED\n";

49
50 // Test equivalent values in Celsius and Fahrenheit

51 results += "\nTEST equivalent temperatures:\n";

52 if (T4.isEqual(T5))

53 results += "Same at -40.0 -- OKAY\n";

54 else

55 results += "Same at -40.0 failed equals\n";

56
57 if (T6.isEqual(T7))

58 results += "Same at freezing -- OKAY\n";

59 else



MAT 2170: Laboratory 12 4

60 results += "Same at freezing failed equals\n";

61
62 if (T8.isEqual(T9))

63 results += "Same at boiling -- OKAY\n";

64 else

65 results += "Same at boiling failed equals\n";

66
67 // Test toString() and getDegreesF()/getDegreesC()

68 results += "\nTEST toString() and getDegreesC()/getDegreesF(): \n";

69 results += "toString(): " +T8.toString() + " --- in F is: " +

70 patternDot2.format(T8.getDegreesF()) + "\n";

71
72 results += "toString(): " + T9.toString() + " --- in C is: " +

73 patternDot2.format(T9.getDegreesC()) + "\n";

74
75 // Test isGreater() / isLess()

76 results += "\nTEST inequalities\n";

77 if (T7.isLess(T9))

78 results += "isLess() -- OKAY\n";

79 else

80 results += "isLess() -- FAILED\n";

81
82 if (T9.isGreater(T7))

83 results += "isGreater() -- OKAY\n";

84 else

85 results += "isGreater() -- FAILED\n";

86
87 // TEST mutators

88 results += "\nTEST mutators\n";

89 T5.setValue(98.6);

90 T1.setScale(’F’);

91 T2.setTemperature(98.6, ’F’);

92 T9.setScale(’W’);

93 results += "Should be 98.60F: " + T5.toString() +

94 "\nShould be 0.00F: " + T1.toString() +

95 "\nShould be 98.60F: " + T2.toString() +

96 "\nShould be 212.0C: " + T9.toString();

97
98 // TEST add()

99 results += "\n\nTEST add()";

100 Temperature adder = Bad1.add(T9);

101 results += "\nShould be 312.0C: " + adder.toString();

102
103 // Last test

104 results += "\n\nlast TEST \nDisplay 123.4567 F, rounded to 2 decimal places: \n";

105 Temperature T10 = new Temperature(123.4567, ’F’);

106 results += T10.toString() + ", and equiv: " +

107 patternDot2.format(T10.getDegreesC()) + " Celsius \n";

108
109 */ results += "\nEND of TESTING";

110 println(results);

111 }

112
113 public static void main(String args[]){

114 (new TestTemperature()).start(); }

115
116 // create a global floating-point formatter

117 DecimalFormat patternDot2 = new DecimalFormat("####0.00");

118 }


