
MAT 2170: Rational Class
and program to calculate π

The Rational Class

In mathematics, the rational numbers are defined as the set Q = {ab | a, b ∈ Integers ∧ b 6= 0}. To
develop a Java class to implement rational numbers, including the operations on them, we must
first determine what invariants (rules), data members and member methods are necessary.

Invariants.

1. The denominator for the rational number is always positive. If the denominator is negative,
the constructor transfers the sign to the numerator by negating that value.

2. The fraction represented by the numerator and denominator is always reduced to lowest terms
by dividing both parts of the fraction by the greatest common divisor. This design decision
ensures that rational numbers are always displayed in their simplest form.

3. Rational class should be immutable — once a Rational object is constructed, the client
should not be allowed to modify it.

Data Members. A Rational class object will need to store a numerator and a denominator,
both of type int. We shall need to guarantee they are always “in lowest (or reduced) terms” — in
other words, that the numerator and denominator have no factors (other than 1 or −1) in common.
Access to these data members should be restricted to the class itself — the client should not be
able to manipulate the numerator or denominator directly.

Member Methods. When designing a class, it is necessary to consider what constructors, inspec-
tors, mutators, and facilitators are required or might be useful.

1. Constructors:

(a) Rational() — no parameters (aka default constructor), set to 0
1

(b) Rational(n) — a single parameter, set to n
1

(c) Rational(n, d) — two parameters, set to n
d

(d) copy constructor?

2. inspectors:

(a) getNumerator() — returns the value of the numerator

(b) getDenominator() — returns the value of the denominator

3. mutators: — are not allowed for this class.

4. facilitators will need to implement the usual arithmetic operations — add, subtract, multiply,
and divide — the results of which are shown in the table below:

Rules for rational arithmetic

Addition Multiplication

a
b + c

d = ad+bc
bd

a
b ∗

c
d = ac

bd

Subtraction Division

a
b −

c
d = ad−bc

bd
a
b ÷

c
d = ad

bc



MAT 2170: Rational Class 2

Also, the class should include the toString() method, which returns a string version of the
fraction suitable for output. Another facilitator method should calculate the gcd(n, m) of
two integers, for use in reducing the fraction.

Calculating π

There are many interesting ways to calculate π. For example1,

π

2
= 1 +

1

3
+

1

3
· 2

5
+

1

3
· 2

5
· 3

7
+ · · ·

or

π = 2

(
1 +

1

3
+

1

3
· 2

5
+

1

3
· 2

5
· 3

7
+ · · ·

)
We would like a method, named piApproximation, which finds a rational approximation to π by
using n terms of the series given above. For example, if n = 2, the result is 2(1 + 1

3) = 8
3 . This

method has one input parameter — the desired number of terms — and returns one value, as
a rational number. We wish to use a modified version of the Rational class in our solution, as
follows:

• Add a new public method, toDouble, to the Rational class. This method will yield a
floating point representation of a Rational object. For example, if a client program has
declared q to be a Rational object, then the expression q.toDouble() is its floating point
value.

Lastly, we need a client program which asks the user for n (the desired number of terms), and
outputs the sum of the first n terms of the series given above in two ways: as an exact rational
value, and then again as a floating-point value. If you implement this program, you will need to keep
n relatively small when you run it — even with the use of long-type numerators and denominators,
you will get quite a few digits fairly quickly2.

1You can find this formula and many others at: http://mathworld.wolfram.com/PiFormulas.html. Calculating
π is a mathematical problem of both historical and current interest. The references on the Wolfram site list dozens
of articles about π, many written within the last twenty years.

2Exercise 10 (page 220) gives a hint how to solve this problem, using Java’s BigInteger class. That is a more
ambitious problem and is not required for this lab assignment.


