Mat 2170
WEEK I
Dr. Van Cleave
Spring 2014

Mat2170 Course Goals
▶ Develop Algorithm Design Skills:
writing step-by-step instructions to solve problems
▶ Develop Facility with the Object Oriented Paradigm:
using, extending, and developing Classes and Objects
▶ Learn a Subset of the Syntax of the Java language:
be capable of writing significant Java programs
▶ Develop Critical Thinking Skills:
the processes of discernment, analysis and evaluation of
information

General Course Guidelines
▶ Syllabus
▶ Schedule (note evening exams)
▶ Academic Integrity
▶ Labs – weekly
▶ Quizzes, Worksheets – weekly
▶ Course Web Site (www.eiu.edu/~mathcs)

Lab Guidelines
▶ Focus on lab work when in lab.
▶ Come to lab prepared, with written drafts of programs.
▶ Cheating is not allowed. Do your own work.
▶ Unexcused late lab submissions will not be accepted.
▶ Not all labs are worth the same number of points.
▶ Finish incomplete labs on your own time when necessary.

Evaluation
In this course there will be:
▶ Weekly — labs, worksheets, and quizzes
▶ Three written evening exams, and
▶ A comprehensive final exam

The relative weights of these components are:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (3)</td>
<td>15% (each)</td>
</tr>
<tr>
<td>Quizzes, Worksheets</td>
<td>10% (total)</td>
</tr>
<tr>
<td>Laboratories & Projects</td>
<td>15% (total)</td>
</tr>
<tr>
<td>Final</td>
<td>30%</td>
</tr>
</tbody>
</table>

Your Responsibilities for the Semester
▶ Attendance — all lectures, labs, and exams
▶ Investing enough time on the course to succeed – about 15 hours per week outside of class. That’s > 2 hrs per day!
▶ Get help when you need it. Ask me questions. Come to my office. Send me email.
▶ Do your own work.
▶ Read the text & study the lecture slides.
More Responsibilities

- Keep up with the work. Turn assignments in on time.
- Turn off your cell phone and all other electronic devices, put them away, and keep them out of my sight during lectures and labs.
- Make-up exams are available only if agreed upon before the regular exam is given.
- No make-up quizzes will be given.

Week 1 Student Responsibilities

- Reading: Textbook, Chapters 1 and 2.1
- Worksheet: Worksheet 1
- Lab: Lab 1
- Web publishing of individual projects
- Electronic submission of entire Lab 1 folder
- Attendance: lecture & lab
- Login to your account in OM3041 Mac Lab before class Wednesday and report any problems to me asap

Week 1 Topics

- Getting ready for Lab 1:
 - Handouts — follow the directions; use the check–off boxes.
 - The Mathematics and Computer Science lab, OM 3041
 - Requirements
 - Netbeans, Java
 - Hello World Program
- Algorithms
- The Programming Process
- What is Computer Science?
- Computer Hardware

An Overview of What You’ll Need In Lab

1. An EIU student account, web page (automatically created), and your (email) password
2. The Lab 1 and Creating Java Programs... Handouts
3. acmLibrary.jar — a file containing the ACM graphics library, which we have extended. It is available on our web site.

4. netbeans — an IDE used to create java programs and applets
5. JDK — the java interpreter
6. safari — a web browser
7. WEB — A way to transfer files from the lab to your web page
8. SUB-MIT — A way to electronically submit files for grading
9. Access to a printer
The Hello World Program (Java)

```java
// Header comments go here
import acm.graphics.*;
import acm.program.*;

public class HelloProgram extends GraphicsProgram{
    public void run(){
        // Create and display a phrase to the user
        add(new GLabel("hello, world", 100, 75));
    } // end of run()

    public static void main(String[] args){
        new HelloProgram().start(args);
    } // end of main()
} // end of class HelloProgram
```

2170 programming and acmLibrary.jar

- The Association for Computing Machinery provides free java libraries (contained in acmLibrary.jar) which we will be using this semester.
- This library supports graphics, graphical user interfaces, and event-driven programming.
- We have extended this library to include even more helpful files.
- Programs can be more interesting and fun if we extend what others have written.
- Much more information is available at jtf.acm.org

The Integrated Development Environment (IDE)

- An IDE provides an organized way to:
 - view and select files from a project
 - edit files, and
 - compile and run programs
- There are multiple IDE choices — we will use netbeans
- netbeans is freely available from Sun Microsystems
- To start up netbeans, click the bluish–grey cube on your dock
- netbeans itself has several windows and menus — follow the lab handout carefully.

The Java Developers Kit (JDK)

- Provides the Java compiler, which netbeans accesses.
- JDK is freely available from Sun Microsystems
- We are currently using version JDK 1.6
- Programs are compiled into the “machine language” of the Java Virtual Machine (JVM).
- Java then interprets those programs by simulating the JVM.

Your Web Page

- When we compile and run a Java program from netbeans, we call that version an application.
- It is also possible to write applets, small interactive programs that run under the control of a web browser.
- EIU provides students with email and a web page.
- Part of your responsibility for labs will be to update your web page to include applets for each program and verify they have published correctly.
- Follow the instructions given in this week’s lab and handout. Refer back to them as needed in subsequent weeks.

Algorithms

- An Algorithm is a set of instructions for solving a problem — much like a recipe for a particular dish, or the instructions for putting together a model airplane.
- An Algorithm is the underlying logic behind any program.
- Algorithmic Properties
 - A step-by-step method for solving a problem
 - All steps must be unambiguous and executable
 - Must terminate with the correct outcome
The Programming Process

- **Algorithmic Design**
 - Specifications – types and restrictions of all required input and output for the program
 - Test Suite – well-selected inputs with expected outputs
 - Logic which solves problem (human readable)
 - General (Outline)
 - Detailed

- **Software**
 - Coding – translating Detailed algorithm into computer language (JAVA)
 - Debugging – locating and eliminating errors
 - Maintenance – evolution of program over time

Programming Errors and Debugging

- **Syntax error**
 - Violation of the grammatical rules of a language
 - Compiler displays error message(s)
 - Corrected by tracking error down and editing the program file

- **Logic/semantic error**
 - Sometimes called a bug; the process of eliminating such errors is called debugging
 - Logic errors are much harder to find and eliminate than syntax errors
 - Good design and testing is essential to writing robust software
 - Time spent on design is well worth it

Software Maintenance

- Between 80% and 90% of total software cost is for maintenance after it has been released
- Reasons software requires maintenance:
 - Continued debugging over time
 - feature enhancement - updates requested by users or to compete in the marketplace
- Two Philosophies of Writing Programs
 - Quick and Dirty — get the program working and move on to next project
 - Software Engineering — the discipline of writing programs so they can be understood and maintained by others
- Programming is an art and skill – learned by practice, not rote memorization, much like playing the piano

What is Computer Science?

- **Hardware** - tangibles; the computer parts we can hold and feel
- **Software** - abstract, intangible
- **Problem Solving** - a skill one needs to practice in order to develop

Components of a Typical Computer

- CPU (Central Processing Unit) - an integrated circuit on a silicon chip; computations, coordinates computer activities
- Memory (Primary Storage) - usually a special integrated-circuit chip called a RAM, or random-access memory; information lost when machine turned off
- Secondary Storage - hard disk, thumb drive, CDs, diskettes, etc.; permanent data storage
- Input/Output Devices (I/O devices) - keyboard, mouse, monitor, printer
- Network - connection to other computers, Internet
Java & the Object Oriented Paradigm

- **Paradigm**: an existing theoretical framework or set of rules
- **Paradigm Shift**: a new idea/framework replaces an older one
- **Old programming paradigm**: procedural — programs were a series of statements, procedures and functions which operated on openly available data
- **New programming paradigm**: object oriented — data and operations are grouped together into integrated units called objects, providing some security for data integrity
- Each object is an instance of a particular class; a single class can serve as a pattern for many different objects.

Why Java?

- **Used on the AP exam** (of concern to HS teachers)
- **Simple, efficient object oriented language**
- **Capacity to access and expand libraries of code, such as the acmLibrary.jar**
- **Robust and Secure**: Designed for creating highly reliable software, with security features designed into the language and run–time system
- **Architecture Neutral and Portable**: Java was designed to work well over a network, regardless of machine type or operating system (multi-platform)

- **High Performance**: runs fast, responds quickly, cleans up after itself
- **Interpreted, Threaded, and Dynamic**: faster program development, multiple activities at the same time, and constantly evolving
- **Cost–effective**: open–source freeware is available on the Internet