
Mat 2170
Week 11

Characters and Strings

Spring 2014

1

Student Responsibilities

I Reading: Textbook, Sections 8.2–8.4

I Lab: Character and String processing

I Attendance

Surely you don’t think that
numbers are as important as words.

King Azaz to the Mathemagician

The Phantom Tollbooth, 1961, by Norton Juster

Chapter Eight Overview

1. Characters - the primitive type char

2. Strings as an abstract idea

3. Using methods in the String class

4. A case study in string processing

2

Characters

I The primitive type char can store a single character.

I There are a finite number of characters on the keyboard.

I [Collating Sequence] If we assign an integer to each character,
we can use that integer as a code for the character it represents.

I Character codes are not particularly useful unless they are
standardized.

I If different computer manufacturers use different coding
sequences (as was the case in the ”early” years), it is harder to
share such data across machine platforms.

3

ASCII

I The first widely adopted character encoding was ASCII —
American Standard Code for Information Interchange.

I With only 256 possible characters (the number of bit
combinations in a byte), the ASCII system proved inadequate to
represent the many alphabets in use throughout the world.

I It has therefore been superseded by Unicode, which allows for a
much larger number of characters.

4

The ASCII Subset of Unicode
The first 128 characters — written in Octal or Base 8

base 0 1 2 3 4 5 6 7

000 \000 \001 \002 \003 \004 \005 \006 \007
010 \b \t \n \013 \f \r \016 \017
020 \020 \021 \022 \023 \024 \025 \026 \027
030 \030 \031 \032 \033 \034 \035 \036 \037
040 space ! " # $ % & ’

050 () * + , - . /

060 0 1 2 3 4 5 6 7

070 8 9 : ; < = > ?

100 @ A B C D E F G

110 H I J K L M N O

120 P Q R S T U V W

130 X Y Z [\] ^ _

140 ‘ a b c d e f g

150 h i j k l m n o

160 p q r s t u v w

170 x y z { | } ∼ \177

5

Notes on Character Representation

I There is NO reason to memorize underlying numeric codes for
the characters

I The important observation is that each character has a numeric
representation — not what that representation happens to be.

6

Character Constants

I To specify a character in a Java program use a character
constant which consists of the desired character enclosed in
single quotation marks. Don’t use the numeric code!

I The constant ’A’ in a program indicates the Unicode
representation of an uppercase A.

I That an uppercase A has the value 1018 is an irrelevant detail
— use the character, not the collating sequence code value.

7

Properties of Unicode

Two properties of the Unicode table worth special notice:

I The character codes for the digits are consecutive

I The letters in the alphabet are divided into two ranges: one for
the uppercase letters and one for the lowercase letters.

Within each range of alphabetic letters, the Unicode values are
consecutive.

8

Special Characters

I Most of the characters in the Unicode table are familiar ones that
appear on the keyboard.

I These characters are called printing (or printable) characters.

I The table also includes several special characters that are
typically used to control formatting — for example, ’\n’.

I Special characters are indicated by an ”escape” sequence:
a backslash followed by a character or sequence of digits.

9

The Most Common Special Characters

\b Backspace

\f Form feed — starts a new page

\n moves to the next line — (Newline)

\r Return — moves to the beginning of the current
line without advancing

\t Tab — moves horizontally to the next tab stop

\\ The backslash character itself

\’ The character ’ — required only in character
constants

\" The character ” — required only in string con-
stants

\ddd The character whose Unicode value is the octal
number ddd

10

The Character Class

I The Character class is defined in the java.lang package and is
therefore available in any Java program without an import

statement.

I The Character class provides several useful methods for
manipulating char values.

11

The Character Class

I Character methods are static — they belong to the entire class,
rather than to any particular object of the class.

I These methods can be used with char objects — similar to Math
class methods and how they work on numeric types.

I It is good programming practice to use these library methods
rather than writing our own.

12

Why Use Character Class Methods

I They are standard — programmers recognize them and know
what they mean.

I Library methods have been tested by millions of client
programmers, so it is reasonable to expect that they are correct.

I Implementations in the Character class are able to convert
characters in alphabets other than our Roman (English)
alphabet.

I Library methods are typically more efficient than methods we
write ourselves.

13

Useful Static Methods in the Character Class

static boolean isDigit(char ch)

Determines if the specified character is a digit.

static boolean isLetter(char ch)

Determines if the specified character is a letter.

static boolean isLetterOrDigit(char ch)

Determines if the specified character is a letter or digit.

static boolean isLowerCase(char ch)

Determines if the specified character is a lowercase letter.

static boolean isUpperCase(char ch)

Determines if the specified character is an uppercase
letter.

static boolean isWhitespace(char ch)

Determines if the specified character is whitespace —
spaces or tabs.

14

Two Which Return char Rather Than boolean

static char toLowerCase(char ch)

Returns a copy of ch converted to its lowercase
equivalent, if any.

Otherwise, the value of ch is returned unchanged.

static char toUpperCase(char ch)

Returns a copy of ch converted to its uppercase
equivalent, if any.

Otherwise, the value of ch is returned unchanged.

Neither of these methods modifies the char

argument sent to the method.

15

Character Arithmetic

I The fact that characters have underlying integer representations
allows us to use them in arithmetic expressions.

I For example, if you evaluate the expression ’A’ + 1, Java will
convert the character ’A’ into the integer 65 and then add 1 to
get 66, which is the character code for ’B’

I As an example, the following method returns a randomly chosen
uppercase letter—why is the (char) in the return statement?

public char randomLetter(){
return (char) rgen.nextInt(’A’, ’Z’);

}

16

Implementation of isDigit

I The following code implements the isDigit() method from the
Character class — given a character, is it a digit between zero
and nine?:

public boolean isDigit(char ch)

{
return (’0’ <= ch && ch <= ’9’);

}

I Only because the numerals ’0’ through ’9’ are consecutive in the
collating sequence could the method be written this way.

17

An Exercise in Character Arithmetic

We wish to implement a method, toHexDigit(), that takes an
integer and returns the corresponding hexadecimal (base 16) digit
as a character:

1. If the argument is between 0 and 9, the method should return
the corresponding character between ’0’ and ’9’.

2. If the argument is between 10 and 15, the method should
return the appropriate letter in the range ’A’ through ’F’.

A = 10, B = 11, C = 12

D = 13, E = 14, F = 15

3. If the argument is outside this range, the method should return
a question mark, ’?’.

18

One Solution

public char toHexDigit(int n)

{
if (0 <= n && n <= 9)

{
return (char) (’0’ + n);

}
else if (10 <= n && n <= 15)

{
return (char) (’A’ + (n - 10));

}
else

{
return ’?’;

}
}

19

Strings as an Abstract Idea

I Ever since our very first program, which displayed the message
”hello, world” on the screen, we have been using strings to
communicate with the user.

I Up to now, we haven’t known much about how Java represents
strings inside the computer, or how to manipulate them other
than to use ’+’ for concatenation — but that hasn’t stopped
us from using them!

I We’ve been able to use strings effectively up to now because
we have thought of them holistically, as if they were a
primitive type.

20

I For most applications, this abstract view of strings is precisely
the right one — however, on the inside, strings are surprisingly
complicated objects.

I Java supports a high–level view of stings by making String a
class whose methods hide the underlying complexity.

21

Using Methods in the String Class

I Java defines many useful methods that operate on the String

class.

I Before trying to use those methods individually, it is important
to understand how those methods work at a more general level.

I The String class uses the receiver syntax when we call a
String method — unlike the Character class static methods
which take chars as arguments — in Java, we send a
message to a String object.

22

String Methods Do Not Change
String Objects

I None of the methods in Java’s String class change the
value of the string used as the receiver.

I Instead, these methods return a new string on which the
desired changes have been performed.

I Classes that prohibit clients from changing an object’s state are
said to be immutable.

I Immutable classes have many advantages and play an
important role in programming.

23

Strings vs. Characters

I The differences in the conceptual model between strings and
characters are easy to illustrate by example.

I Both the String and Character class export a
toUpperCase() method that converts lowercase letters to
their uppercase equivalents.

24

toUpperCase()

I In the Character class, you call toUpperCase() as a static
method:

ch = Character.toUpperCase(ch);

I In the String class, you apply toUpperCase() to an existing
string by sending a message to the string:

str = str.toUpperCase();

Note that both classes require us to assign the result back
to the original object if we want to change its value.

25

Selecting Characters from a String

I Conceptually, a string is an ordered collection of characters.

I In Java, the character positions in a string are identified by an
index that begins at 0 and extends up to one less than the
length of the string.

I For example, the characters in the string ”hello, world” are
arranged like this:

0 1 2 3 4 5 6 7 8 9 10 11

h e l l o , w o r l d

26

The charAt() Method

I We can obtain the number of characters in a String object by
sending it the length() method, which returns an int.

I We can select an individual character in a String by sending it
the charAt(k) message, where k is the index of the desired
character.

I The expression str.charAt(0) returns the first character in the
String str, which is a index position 0.

I For example: char firstChar = str.charAt(0);

27

Concatenation

I One of the most useful operations available for strings is
concatenation, which consists of combining two strings end to
end with no intervening characters, like:

"life" + "jacket" --> "lifejacket"

I The String class exports a method called concat() that
performs concatenation, although that method is hardly ever
used.

I Concatenation is built into Java in the form of the ”+”
operator, which you’ve used multiple times in print() and
println() statements, e.g.:

println("(" + x + ", " + y + ")");

28

String Concatenation

I If we use ”+” with numeric operands, it signifies addition.

I If at least one operand is a string, Java interprets ”+” as
concatenation.

I When it is used in this way, Java performs the following steps:

1. If one of the operands is not a string, convert it to a string by
applying the toString() method for that class.

2. Apply the concat() method to concatenate the values.

29

Extracting Substrings

The substring() method makes it possible to extract a piece of a
larger string by providing index numbers that determine the
extent of the substring.

I The general form of the substring() call is:

String newStr = str.substring(p1, p2);

where p1 is the first index position in the desired substring,
and p2 is the index position in the target string immediately
following the last position of the substring.

I As an example, if we wanted to select the substring ”ell” from
a string object str containing ”hello, world”, we would
make the following call:

String newStr = str.substring(1, 4);

30

Checking String Equality

I We often wish to test whether two strings are equal, in the
sense that they contain the same characters.

I Although it would seem natural to do so, we cannot use the
”==” operator for this purpose.

31

Checking String Equality

Given s1 and s2 are String objects:

I While it is legal to write: if (s1 == s2) ..., the test will
not have the desired effect.

I When ”==” is used on two objects, it checks whether they
reference the same memory address — whether they are,
indeed, identical down to where they are stored.

I To test for equality we must utilize the equals() method:

if (s1.equals(s2))...

32

Comparing Characters and Strings

I The fact that characters are primitive types with a numeric
internal representation allows us to compare them using the
relational operators.

I If c1 and c2 are characters, the expression c1 < c2 is true

if the Unicode value of c1 is less than that of c2.

33

compareTo()

I The String class allows us to compare two strings using the
internal values of the characters, although we must use the
compareTo() method instead of the relational operators:

s1.compareTo(s2)

I The compareTo() returns

1. a negative value if s1 is less than s2

2. a positive value if s1 is greater than s2

3. 0 if the two strings are equal

34

Searching in a String

I Java’s String class includes several methods for searching
within a string for a particular character or substring.

I The method indexOf() takes either a string or a character, and
returns the index within the receiving string at which the first
instance of the value begins.

I If the string or character does not exist at all in the target
string, indexOf() returns −1.

35

Search Examples

0 1 2 3 4 5 6 7 8 9 10 11

h e l l o , w o r l d

I If the String object str contains the string ”hello, world”:

str.indexOf(’h’) returns 0
str.indexOf("o") returns 4
str.indexOf("ell") returns 1
str.indexOf(’x’) returns −1

I The indexOf() method takes an optional second argument
that indicates the starting position for the search. Thus:

str.indexOf("o", 5) returns 8

36

Other String Class Methods

int lastIndexOf(char ch) or lastIndexOf(String str)

Returns the index of the last match of the argument,
or −1 if none exists.

boolean equalsIgnoreCase(String str)

Returns true if this string and str are the same,
ignoring diffences in case.

boolean startsWith(String str)

Returns true if this string starts with str.

boolean endsWith(String str)

Returns true if this string ends with str.

37

String replace(char c1, char c2)

Returns a copy of this string with all instances of c1
replaced by c2.

String trim()

Returns a copy of this string with leading and trailing
whitespace removed.

toLowerCase()

Returns a copy of this string with all uppercase characters
changed to lowercase.

toUpperCase()

Returns a copy of this string with all lowercase characters
changed to uppercase.

38

Recurring String Patterns

The following two patterns are particularly important and are
sometimes seen in combination:

1. Iterating through the characters in a string:

for (int i = 0; i < str.length(); i++)

{
char ch = str.charAt(i);

...code to process each character in turn...

}

2. Growing a new string, character by character:

String result = "";

for (whatever limits are appropriate)

{
...code to determine next char to be added...

result += ch;

}

39

Exercises: String Processing

As a client of the String class, how could we implement a new
method, toUpperCase(str) (not part of the String class), so it
returns an uppercase copy of str?

public String toUpperCase(String str)

{
String result = "";

for (int i = 0; i < str.length(); i++)

{
char ch = str.charAt(i);

result += Character.toUpperCase(ch);

}
return result;

}

Given a String str, how could we modify it using this method so
all letters (in str) are uppercase?

40

Suppose now we are actually implementing the String class. How
would we code the indexOf(ch) method (inside the class)?

public int indexOf(char ch)

{
for (int i = 0; i < length(); i++)

{
if (ch == charAt(i)) return i;

}
return −1;

}

Recall that since this method would be part of the String class,
the invocations of length() and charAt() do not require a
receiver, and are being sent to the String object itself.

41

Reversing a String object

Suppose we need a method to reverse the characters in a string.
For example, STRESSED reversed is DESSERTS

public void run()

{
println("This program reverses a string.");

String str = readLine("Enter a string: ");

String rev = reverseString(str);

println(str + " spelled backwards is: "

+ rev);

}

How could we implement the reverseString() method?

42

Pig Latin — A Case Study in String Processing

Section 8.5 works through the design and implementation of a
program to convert a sentence from English to Pig Latin.

At least for this dialect, the Pig Latin version of a word is formed
by applying the following rules:

1. If the word begins with a consonant, form the Pig Latin
version by moving the initial consonant substring to the end of
the word, then add the suffix ay as follows:

scram → amscray

2. If the word begins with a vowel, form the Pig Latin version
simply by adding the suffix way like this:

apple → appleway

43

Starting at the Top — the General Algorithm

In accordance with the principle of top–down design, it makes
sense to start with the run() method, which has the following
pseudocode form:

public void run()

{
Tell the user what the program does
Prompt for and get a line of text from the user
Translate the line into Pig Latin and display

}

44

Implementing the Pseudocode

I The pseudocode is easy to translate to Java, as long as we are
willing to include calls to methods we haven’t written yet:

public void run()

{
println("This program translates a line"

+ "into Pig Latin");

String line = readLine("Enter a line: ");

println(translateLine(line));

}

I Now all we must do is design and implement
translateLine()!

45

Designing translateLine()

The translateLine() method must:

1. divide the input line into words

2. translate each word

3. re–assemble those words into a new string

46

Using Built–in Classes

I But why re-invent the wheel — it is easier to make use of existing
facilities in the Java library to perform the dividing task.

I One strategy is to use the StringTokenizer class in the
java.util package, which divides a string into independent units,
called tokens.

I A client of a StringTokenizer object then asks for these tokens
one at a time.

I The set of tokens delivered by the tokenizer is called the token
stream.

47

What’s a token?

I The precise definition of what constitutes a token depends on the
application — what problem we’re solving.

I For the Pig Latin problem, tokens are either words or the
characters that separate words, which are called delimiters.

I The application cannot work with the words alone, because the
delimiter characters are necessary to ensure that the words don’t
run together in the output.

48

The StringTokenizer Class

The constructor for the StringTokenizer Class takes three
arguments — the last two are optional:

1. A string which is the source of the tokens

2. A string which specifies the delimiter characters to use. By
default, the delimiter characters are set to the whitespace
characters.

3. A flag indicating whether the tokenizer should return
delimiters as part of the token stream. By default, a
StringTokenizer ignores the delimiters.

49

Creating a StringTokenizer has the general form:

StringTokenizer tokenizer =

new StringTokenizer(

inputString, // token source

DELIMITERS, // token separators

includeDelimiters); // return delimiters?

50

Once we have created a StringTokenizer, we use it by setting
up a loop with the following general form:

while (tokenizer.hasMoreTokens())

{
String token = tokenizer.nextToken();

code to process the token

}

51

The translateLine Method

private String translateLine(String line))

{
String result = "";

StringTokenizer tokenizer =

new StringTokenizer(line, DELIMITERS, true);

while(tokenizer.hasMoreTokens())

{
String token = tokenizer.nextToken();

if(isWord(token))

token = translateWord(token);

result += token;

}

return result;

}

The DELIMITERS constant is a string containing all the legal punctuation

marks to ensure they aren’t combined with the words.

52

The translateWord() Method

The rules for forming Pig Latin words, rewritten in Java:

private String translateWord(String word))

{
int vowelPosn = findFirstVowel(word);

if (vowelPosn == -1) { // no vowel, no rule

return word;

}
else if (vowelPosn == 0){ // begins with vowel

return word + "way";

}
else { // begins with consonant

String head = word.substring(0, vowelPosn);

String tail = word.substring(vowelPosn);

return tail + head + "ay";

}
}

53

All That’s Left to Do. . .

I Design and implement the isWord() method

I Design and implement the findFirstVowel() method

when finished, the result of entering the line

this is pig latin.

should be the String:

isthay isway igpay atinlay.

54

