Mat 2170
Week 14

ArrayList Class

Spring 2014

Student Responsibilities

» EXAM - Thursday, 4/24, 7:00 pm

one sheet of 8.5” by 11" paper for notes is allowed

» Reading: Textbook, Chapter 11

v

Lab: ArrayList and more on writing classes from scratch

» Attendance

Lab 14: One Handed Solitaire — An OverView

> A standard Deck of 52 cards, shuffled (with user's seed)
» Play continues until Deck is empty

» When Hand is empty, deal from “top,” otherwise deal from
“bottom”

> After a Card is dealt, “collapse” Hand (if possible), comparing

the ¢ 1R RGAUImANG, thrang . Eatds Rarlft M Hand

» If the Suits match, discard the two Cards after the top Card

» Continue collapsing until no more matches

> Score is number of Cards left in Hand at the end of the game

> Program repeats until user enters —1 for the shuffle seed

Class Card

» Data members:
> suit
> rank
> (faceup isn't needed for this game)

» Member methods:

> constructor()
> suitsMatch(), ranksMatch()
> toString(), quickString()

Class Deck

» Data member:
> an ArrayList of Card

> Member methods:

» Two constructors
shuffle(seed)
isEmpty(), size()
dealTop(), dealBottom()
getCard(), add(), remove()
toString()

vvyvYVvYyy

The Deck Shuffle

public void shuffle(int seed)
{

Collections.shuffle(deck, new Random(seed));

}

Where deck is the name of the ArrayList in Deck class.

Use: import java.util.x




The Collapse

If there are at least 4 cards in the Hand:

Create and initialize currentCard (on top)
and matchCard (3 back)

While there are at least 4 cards in the Hand,
and either ranks or suits match:

If ranks match,
delete the top 4 cards
Else if suits match,
delete the 2 below the top card

If Hand has at least 4 cards
re-initialize currentCard and matchCard

Lab 14

Questions?

The ArrayList Class

The java.util package includes a class called ArrayList that
extends the usefulness of arrays by providing additional
operations.

Since ArrayList is a class, all operations on ArrayList objects
are indicated using method calls.

In the summary of ArrayList methods which follows, the

notation <T> indicates the base type of the ArrayList object.

ArrayList Methods

boolean add(<T> element)
Adds a new element to the end of the ArrayList;

the return value is always true

void add(int index, <T> element)
Inserts a new element into the ArrayList;
before the position specified by index

<T> remove(int index)
Removes the element at the specified position and

returns that value

boolean remove(<T> element)
Removes the first instance of element, if it appears;

returns true if a match is found

void clear()

Removes all elements from the ArrayList

int size()
Returns the number of elements in the ArrayList

<T> get(int index)
Returns the object at the specified index

<T> set(int index, <T> value)

Sets the element at the specified index to the new

value and returns the old value

index0f (<T> value)
Returns the index of the first occurrence of the
specified value, or —1 if it does not appear

boolean contains(<T> value)
Returns true if the ArrayList contains the
specified value

boolean isEmpty()
Returns true if the ArrayList contains no elements




Generic Types in Java

> The type parameter < T > used in the previous slides is a
placeholder for the element type used in the array.

» Class definitions that include a type parameter are called generic
types.

» When we declare or create an ArrayList, it is a good idea to
specify the element type in angle brackets. For example:

ArrayList<String> myNames =
new ArrayList<String>();

» This allows Java to check for the correct element type when set ()
is called, and eliminates the need for a type cast when get () is
called.

» Java includes a wrapper class to correspond to each of the
primitive types:

boolean <> Boolean float <> Float
byte <> Byte int <> Integer
char <> Character long <> Long
double <> Double short <> Short

> The value stored in the object maxItems is an object, and we
can use it in any context that require objects.

Using Wrapper Classes

» All of the primitive wrapper classes in Java are immutable —
their states cannot be modified after they are created.

» For each wrapper class, Java defines a method to retrieve the
primitive value, e.g.:

int underlyingValue = maxItems.intValue();

» Java will automatically box and unbox the primitive values in a
wrapper class.

Generic Types and Boxing/Unboxing

» Automatic conversion of values between a primitive type and the
corresponding wrapper class allows an ArrayList object to
store primitive values, even though the elements of any
ArrayList must be a Java class.

» For example:

ArrayList <Integer> myList = new ArrayList<Integer>();
myList.add(42);
int answer = myList.get(0);

In the second statement, Java uses boxing to enclose 42 in a
wrapper object of type Integer; the third statement unboxes
the Integer to obtain the int.

Reversing an ArrayList

import acm.program.*;
import java.util.*;

public class ReverseArraylList extends ConsoleProgram {
public void run()
{
println("This program reverses the elements " +
"in an ArrayList.");
println("Use " + SENTINEL + " to signal the " +
"end of the list.");

ArrayList<Integer> myList = readIntArrayList();
reverseArrayList (myList) ;
printIntArrayList (myList);

readIntArrayList ()

/* Reads the data into the list */

private ArrayList<Integer> readIntArrayList()
{
ArrayList<Integer> list = new ArrayList<Integer>();

int value = readInt(" ? ");
while (value != SENTINEL)

{
list.add(value);
value = readInt(" ? ");
}
return list;
}
/* Private constant --- Define the end-of-data value */

private static final int SENTINEL = O;




reverseArrayList() & swapElements()

/* Reverses the data in an ArrayList */
private void reverseArrayList(ArrayList<Integer> list)
{

for (int i = 0; i < list.size() / 2; i++)

{

swapElements(list, i, list.size() - i - 1);

/* Exchanges two elements in an ArrayList */
private void swapElements(ArrayList<Integer> list,
int pl, int p2)

{
int temp = list.get(pl);
list.set(pl, list.get(p2));
list.set(p2, temp);

}

ArrayList Searching Methods

Method Description

contains(value) returns true if the given value appears

in the list

Ex: list.contains("hello")

returns the index of the first occurrence
of the given value in the list (—1 if not
found)

Ex: list.index0f ("world")

index0f (value)

lastIndexOf (value) returns the index of the last occurrence
of the given value in the list (—1 if not
found)

Ex: list.lastIndexOf ("hello")

Where list is an ArrayList<string>.

ArrayList Sorting and Binary Search Methods

The java.util package contains a class called Collections which
contains several useful static methods. Of particular interest:

Method Description

sort(list) rearranges the elements into sorted
(non—decreasing) order

Ex: Collections.sort(L)

binarySearch(list, value) searches a sorted list for a given ele-
ment value and returns its index

Ex: Collections.binarySearch
(L,"hello")

When an ArrayList is sorted, binary search is much faster than
linear search.

21




