
Week 15

Exceptions, Sorting, Searching & Review

Spring 2014

1

Student Responsibilities

I Reading: Textbook, Chapter 12.1 – 12.3

I Lab is a participation lab this week – show up and get a finch
to move, light up, and say something, then show me.

I Lab 14 is due no later than 4:00 pm Friday

I Attendance

I Study for finals: review old exams, quizzes, labs, assigned
reading, and handouts — and remember to:

Get some sleep!

2

Exception Handling – a Short Intro

I There are some runtime situations which cause a Java program
to “crash.” Examples include:

I division by zero

I attempting to access an array with an index which is out of its
bounds

I attempting to dereference a null pointer

I These types of problems are called exceptions.

I When a Java method encounters a problem during execution, it
responds by throwing an exception — this is the process of
reporting an exceptional condition outside the normal
program flow.

3

Runtime Exceptions

I When an exception is thrown, the Java runtime system:

I stops executing code at that point

I begins searching backwards for methods on the control stack
— starting with the current method and proceeding to the
method which called it, and so forth

I until it finds a method that expresses the intent to catch
such an exception if one is thrown

I Most runtime exceptions do not need to be caught — the
exception will simply propagate backwards on the control stack,
eventually causing the program to halt.

4

try & catch()

I On the other hand, attempting to access an input file which
doesn’t exist, for example, is a different situation.

I Programmers who use the java.io package are required (i.e.,
forced) by Java to check for the exceptions that the methods
in that package throw.

I Thus, the code to open and read a file in Java is not complete
unless it explicitly catches exceptions propagated from the
IOException class.

I The code that works with data files must appear inside a try
statement, with an associated catch() statement.

5

try - catch() Syntax

try

{
// code in which an exception might occur

}

catch (type identifier)

{
// code to respond to the exception

}

Where:

I type is the type of the exception

I identifier is the name of a variable that hold the exception
information

6

File Opening Example

try

{
code to open and read the file

}

catch (IOException ex)

{
code to respond to exceptions that occur

}

7

InputFile Class by Dr. Mertz — Examples

/** Read an entire line from the file. Returns null if an

* error occurs or the end of the file is reached.

* @return the next line of text from the file */

public String readLineFromFile(){

if (buffer == null) { // connection to file failed

showErrorDialog(NO_FILE_ERROR);

return null;

}

try {

return buffer.readLine();

}

catch (IOException ex) {

showErrorDialog(FILE_IO_ERROR);

return null;

}

}

8

/** Tries to read next word and convert it into an Integer.

* The converted value (or null if error) is returned. */

public Integer readIntegerFromFile() {

if (buffer == null) { // no file connected to buffer

showErrorDialog(NO_FILE_ERROR);

return null;

}

String word = readWordFromFile();

if (word == null) { return null; }

try { return Integer.valueOf(word); }

catch (NumberFormatException ex) {

showErrorDialog(word + " is not an integer!");

return null;

}

}

9

Searching

I Given a list of items, it is often the case that we need to search
the list for a specific value.

I One example might be finding Aunt Sally’s address among your
list of family and friends.

I Something that impacts how we search is whether or not the
list is in order.

I Looking someone up by their last name in a phone book is
different than looking for their information on scraps of paper
stuffed in your backpack.

10

Types of Searches

I In a Linear search, we start at the beginning and work our way
through the entire list one item at a time until we either find
what we’re looking for, or we reach the end of the list.

Linear search can be used on any list.

I If a list is sorted, we can use a Binary search:
I check the middle value of the list
I If we find what we’re looking for, we’re done.
I If we don’t, then we can throw half the list away and look in the

middle of the half–list we now have.
I This process continues until we find what we’re looking for, or

the current list is empty.

Binary search can only be used on sorted lists.

11

Linear Search Algorithm

Mark the region in the list to search

while (the region is not empty) {

probe the first entry of the region

if (Target is found){

note the location

return true

}

else

go on to the next entry, decrease the region

}

if we get to this point, the region is empty

yet we still have not found the target, so {

set location to an impossible value

return false

}

12

Linear Search: Marking a Region

0

!= Target

Low L.size()−1

Low began at 0. Search is partially completed.

The cyan region to the left of Low has already been considered and
does not contain the Target.

13

Linear Search: Worst Case Number of Probes

For an ArrayList of size n,
linear search makes at most n probes (comparisons).

14

Searching a Temperature List: Linear Search

public static boolean LinearSearch(

ArrayList<Temperature> L,

Temperature Target,

Integer Location){

int Low = 0;

while (Low < L.size()) {

// Target is found

if (Target.isEqual(L.get(Low))

{

Location = Low;

return true;

}

else // Target may be in right-hand section

Low++; // Discard mismatch

}

Location = L.size(); // Target not in list

return false;

}

15

Linear Search: Integer List Example

62 7553514942403229262220161410

Low = 0

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 16

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 16Low = 1

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 16Low = 2

16

Searching a Sorted list: Binary Search Algorithm

Mark the region to search

while (the region is not empty) {

probe near the middle of the region

if (found)

note the location, return true

else

shrink the region by discarding

the lower or upper portion as appropriate

}

set location

return false

17

Searching a Sorted list: Marking a Region

< Target > Target

L.size()−1HighLow0

Low began at 0, High at L.size()-1.
Search is partially completed.

The cyan regions to the left of Low and right of High have already
been considered and do not contain the Target.

18

Binary Search: Worst Case Number of Probes

For a list of size n, binary search makes at most blog2(n)c+ 1
probes or comparisons.

n Linear Binary

22 − 1 = 3 3 2

23 − 1 = 7 7 3

24 − 1 = 15 15 4

25 − 1 = 31 31 5
...

...
...

210 − 1 = 1023 1023 10
...

...
...

220 − 1 = 1048575 1048575 20

19

Searching a Sorted list: Binary Search
int Low = 0;

int High = L.size()-1;

int Middle;

while (Low <= High) {

Middle = (Low + High)/2; // Probe near the middle

if (Target.isEqual(L.get(Middle))){

Location = Middle; // Found Target

return true;

}

else if (Target.isLess(L.get(Middle)))

High = Middle - 1; // Discard right-hand section

else // Target.isGreater(L.get(Middle))

Low = Middle + 1; // Discard left-hand section

}

Location = Low; // Target not in list

return false;

20

Binary Search Example 1

62 7553514942403229262220161410

Target = 49Low = 0 Middle = 7High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

62 7553514942403229262220161410

Target = 49High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 11

62 7553514942403229262220161410

Target = 49High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 9

62 7553514942403229262220161410

Target = 49High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Middle = 10Low = 10

Location = 10

21

Binary Search Example 2

62 7553514942403229262220161410

Low = 0 Middle = 7High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 47

62 7553514942403229262220161410

Target = 47High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 11

62 7553514942403229262220161410

Target = 47High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 9

22

62 7553514942403229262220161410

Target = 47High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 9

62 7553514942403229262220161410

Target = 47High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Middle = 10Low = 10

62 7553514942403229262220161410

Target = 47

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 10 High = 9 (Middle = 10)

Location = 10

23

Inserting a New Value into a Primitive Array

NewItem

Position

24

Inserting a New Value: Example

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

Position = 10New Item = 47

15

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

NewItem = 47 Position = 10

15

75

42403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

NewItem = 47 Position = 10

15

7562535149

25

Insertion Sort: Example

28 1 38

8

8

8

8

2

2

2

1

1 3

26

Using Search and Insert:
Insertion Sort with ArrayList

public static void InsertionSort(ArrayList<Integer> L) {

// Save a copy of the list

ArrayList<Integer> Original = new ArrayList<Integer>();

for (int i = 0; i < L.size(); i++) {

Original.add(L.get(i));

}

// Remove all entries from the parameter vector

L.clear();

// Insert back into the given vector from the copy, one

// element at a time, using Search to find correct location

int Place;

for (int i = 0; i < Original.size(); i++) {

Search(L, Original[i], Place);

Insert(L, Original[i], Place);

}

}

27

Course Review

I Algorithm
I Step-by-step method for solving a problem

I All steps must be unambiguous and executable

I Must terminate with the correct outcome

I Object
I Encapsulates “state” and “behavior” in one entity

I examples:

I a string of characters

I a rectangle in a graphics system

I an Angle class object

28

Data Types

I Primitive types
I int
I double
I char
I boolean
I . . .

I Types defined by a Class
I String
I GRect
I GPoint
I ArrayList
I Rational
I Integer
I . . .

I A reminder: Don’t forget to watch for integer division!

29

Control Structures: Selection

I The if statement:

if (booleanExpression)

statement;

if (booleanExpression)

statement1;

else

statement2;

I if statements can be nested

I switch statements

30

Control Structures: Iteration

I the while loop

while (BooleanExpression)

{

statements;

}

I the for loop

for (InitExpr; BoolExpr; UpdateExpr)

{

statements;

}

I loops can be nested

31

Classes

I Composed of data members (storage) and member methods
(messages)

I Members may be public or private (or protected)

I A class may be derived from another class using inheritance

I Examples of classes:
GRect, String, RandomGenerator, GSmartCircle, Integer,

ArrayList, and Rational

32

Messages

Objects of a class can respond to “messages”

I To send a message, we identify a receiver (unless inside a class
and sending to self)

I . . . and the message, including any required parameters

I Examples:

println(R.getWidth())

R.setColor(Color.BLUE)

rgen.nextInt(low, high)

(getX() < 0 || (getX() + getWidth() > window.getWidth()))

33

Methods

I “Black box view” — what do we want the method to do?

I “Glass box view” — how does the method achieve its goal?

I The method header spells out the interface details:
I The accessibility — public, protected, or private

I Optional: if the method is static

I The type of the return value (void, if none)

I The name of the method

I The details about parameters:

The order, number and type of each parameter

I The implementation spells out the full details of how it does its
job

I Invoking methods inside (object) vs outside (client) a class.

34

Invoking Methods

I void methods typically cause some action to occur

I Methods with a return value typically compute some value

I A client of Static methods in a class must use the class name
as the ”receiver”

I Some examples:

char c = Character.toUpperCase(SomeChar);

double y = Math.sqrt(x);

int z = myMin(a, b, c);

Display(a, b, c);

Collections.sort(MyList);

35

ArrayList

I A contiguous list of items, all of the same type

I First valid index of ArrayList X is 0

I Last valid index is X.size()-1

I Common messages:
I size()
I clear(), remove(ndx)
I add(value)
I get(ndx)
I set(ndx, value)

36

Searching

I Linear search sequentially probes a search region, comparing its
items to the target

I Binary search reduces the search region by half on each probe

I unsorted ArrayList — linear search

I sorted ArrayList — binary search

37

Sorting

I There are many different sorts —
I Insertion
I Selection
I Bubble
I Heap
I Quick
I Bucket, etc. (Advertisement: take MAT 2670!)

I Insertion sort uses binary search to locate the insertion position.

38

Design A Header For A Method Which. . .
I Tests whether or not a given integer is a prime number.

I Determines the number of prime numbers k in the closed
interval [L,U].

I Determines the number of radians in an angle which is specified
in degrees.

I Replaces every occurrence of a blank in a String with a
hyphen.

39

I Replaces every occurrence of one specified character in a
String with another character.

I Determines the number of hyphens in a given String.

I Determines the midpoint of two specified points in the plane.

40

Design An Implementation For A Method Which. . .
I Given a sorted ArrayList A, creates an ArrayList B which is

sorted in reverse order

I Given two points, P1 and P2, finds the point which is r% of the
way from P1 to P2.

41

I Given a String S, modifies it so all alphabetic characters in it
are lowercase

I Given C, an ArrayList of characters, modifies it so all
alphabetic characters in it are lowercase

42

Designing Derived Classes

I Desired: A class derived from the GLine class to create a
rotating line

I Data Members: a pause time, dx, and dy (for the end point of
the line)

I Constructor : start x, start y, end x, end y, pause time, dx, dy,
and color

I Constructor : end x, end y, and defaults of start x and start y
equal 0.0, pause time of 50, dx and dy of 2.0, and color blue

I move() : reset the end point by dx and dy, then pause
setEndPoint() and getEndPoint() are available

43

Designing A Class From Scratch

I Desired: A new class which represents the menu items at a fast
food place, and a list of such items

I Item: name, carbs, calories, cost with inspectors and mutators

I List: of Items with methods: total items, total carbs, total
calories, total cost

44

