
Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Mat 2170
Chapter Four – Part A

Control Statements – Iteration

Spring 2014

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Week 4

Student Responsibilities

Reading: Textbook, Chapter 4.1 – 4.2, 4.5 – 4.6

Lab preparation & lab

Attendance

Chapter Four Overview: 4.1 – 4.4

A little review

Java statement types

Control statements and problem solving

The while statement

The for statement

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Compound Assignment Statements

There are five forms of the compound assignment statement:
+=, -=, *=, /=, and %=

Before Assignment After

int i = 2; i is 2

i is 2 i += 3; i is 5

i is 5 i -= 1; i is 4

i is 4 i *= 3; i is 12

i is 12 i /= 3; i is 4

i is 4 i %= 4; i is 0

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Increment and Decrement

It is often the case that we wish to add or subtract one from a
numeric object. There are many equivalent statements to
accomplish this.

To add one to int object k:

k = k + 1; k += 1; k++; ++k;

To subtract one from object k:

k = k - 1; k -= 1; k--; --k;

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The boolean type

One of the built-in primitive data types

Has two values only: true and false

Is useful for loops—the while statement

Is useful for conditionals—the if statement

Examples of Boolean objects:

boolean doAgain = true;

boolean bigger = false;

The type of the parameter passed in the GRect and GOval

message setFilled():

GRect MyRect = new GRect(x, y, w, h);

MyRect.setFilled(true);

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Boolean operators — AND

The operator + is used to combine two numeric objects

The operator && is used to combine two boolean objects:

P Q P && Q

true true true

true false false

false true false

false false false

Both operands must be true to obtain true.
This is similar to good parenting

when both parents must say “Yes.”

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Boolean operators — OR

The operator || is used to combine two boolean objects:

P Q P || Q

true true true

true false true

false true true

false false false

If either operand is true, the result is true.
This is similar to not-so-good parenting,

where only one must say “Yes.”

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Boolean operators — NOT

The operator ! is used to negate one boolean object:

P !P

true false

false true

The ! operator simply “flips” the truth value.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Relational Operators

Mathematics Java

< <

≤ <=

> >

≥ >=

6= !=

= ==

Notes:

The result of a relational operator is a boolean value

Testing for equality requires the == operator.

The = operator is used for assignment.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Examples of relational operators

Assume these declarations are in effect:

int i = 1;

int j = 2;

int k = 2;

Boolean
Expression

true or

false?

Boolean
Expression

true or

false?

i < j i < (j + k)

j == k j <= k

j < k i == k

i*i > k*k j != 2

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Java Statement Types

Java programs consist of a set of classes.

Classes contain methods, and each method consists of a
sequence of statements.

There are three basic types of Java statements:

1. Simple

2. Compound

3. Control

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Simple statements are formed by adding a semicolon (;) to the
end of a Java expression

Compound statements (aka blocks) consist of a sequence of
statements enclosed in curly braces: { }

Control statements fall into two categories:

1. Conditional (selection) statements that make choices

2. Iterative (looping) statements that specify repetition

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Control Statements and Problem Solving

Before looking at the details of control statements, it may help
to look at common control patterns — when and how they are
used.

We will extend the Add2Integers program from lab 1 to
create programs that add longer lists of integers.

We will illustrate three different strategies:

1. Add new code to process each (additional) input value

2. Repeat the input cycle a predetermined number of times (for
loop)

3. Repeat the input cycle until a special sentinel value is entered
by the user (while loop)

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The Add4Integers Problem

At this point, the only way to increase the number of inputs is
to add new statements for each one:

public class Add4Integers extends ConsoleProgram

{

public void run()

{

println("This program adds four numbers.");

int n1 = readInt("Enter first number: ");

int n2 = readInt("Enter second number: ");

int n3 = readInt("Enter third number: ");

int n4 = readInt("Enter fourth number: ");

int total = n1 + n2 + n3 + n4;

println("The total is " + total + ".");

}

}

This strategy is difficult to generalize and would be
cumbersome if we needed to add 100 values!

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The Repeat–N–times Pattern

The Repeat–N–times Pattern:
execute a set of statements a specified number of times.

The general form of the pattern:

for (int i = 0; i < repsDesired; i++)

{
statements to be repeated;

}

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Terminology

A control statement that repeats a section of code is called a
loop.

The statements to be repeated are called the body of the
loop.

Each execution of the body of a loop is called a cycle, an
iteration, or a pass through the loop.

In a for–loop, the number of repetitions is specified in the first
line of the pattern, which is called the loop header.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The AddNIntegers Program

This program uses the Repeat–N–Times pattern to
compute the sum of a predetermined number of integer
values, specified by the named constant N.

public class AddNIntegers extends ConsoleProgram

{

public void run()

{

println("This program adds " + N + " numbers.");

int total = 0;

for (int i = 0; i < N; i++)

{

int value = readInt("Enter number ["+i+"]: ");

total += value;

}

println("The total is " + total + ".");

}

private static final int N = 100;

}

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The Repeat–Until–Sentinel Pattern

The programs on the previous slides haven’t been flexible: you
must add either four integers, or 100 integers. Sometimes we
may not know how many integers are on the list to sum.

The Repeat–Until–Sentinel Pattern executes a set of
statements until the user enters a specific value, called a
sentinel, to signal the end of the list:

prompt user and read in a value

while (value != sentinel)

{
process value;

prompt user and read in a value;

}

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

This approach works for any number of values.

The sentinel value chosen should not be a possible legitimate
data value.

Define the sentinel as a named constant to make it easy to
change.

Note the initialization of value before the loop, then the same
prompt and read inside the loop.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The AddIntegerList Program

Compute the sum of a list of non–negative integer values:

public class AddIntegerList extends ConsoleProgram

{

public void run()

{

println("Add a list of non-negative integers.");

println("Enter one value per line, "+SENTINEL);

println("to signal the end of input.");

int total = 0;

int value = readInt("Enter number, "+SENTINEL+" to end: ");

while (value != SENTINEL)

{

total += value;

value = readInt("Enter number, "+SENTINEL+" to end: ");

}

println("The total is " + total + ".");

}

private static final int SENTINEL = -1;

}

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Exercise: Control Patterns

Using the AddIntegerList program as a basis, write a new
AverageList program that reads a set of non–negative
integers from the user and displays their average.

It is important to keep in mind that the average of a set of
integers may well not be an integer itself

The AverageList program will require the following changes:

Convert the value of total to a double before computing the
average

Keep a count of the number of input values, along with the sum

Update the user messages and program documentation

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The AverageList Program

public class AverageList extends ConsoleProgram

{

public void run()

{ println("Average a list of non-negative integers.");

println("Enter one value per line, "+SENTINEL);

println("to signal the end of input.");

int total = 0;

*** //counter

int value = readInt("Enter number, "+SENTINEL+" to end: ");

while (value != SENTINEL)

{ total += value;

*** //update

value = readInt("Enter number, "+SENTINEL+" to end: ");

}

*** //calculate

*** //display

}

private static final int SENTINEL = -1;

}

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The while loop

LOOP BODY

LOOP
EXIT

ENTER
LOOP

expression
Boolean

false

true

...

while (Boolean expression)

{
...

LOOP BODY

...

}
...

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The while Statement

while (condition)

{
statements to be repeated

}

When Java encounters a while statement, it begins by evaluating the
condition in parentheses, which must have a boolean value.

If the value of condition is true, Java executes the statements in the
body of the loop.

At the end of each cycle, Java re–evaluates condition to see
whether its value has changed.

If the condition evaluates to false, Java exits from the loop and
continues with the statement following the closing brace at the end
of the while body.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

A simple while loop

int n = 1;

int sum = 0;

while (n <= 7)

{

sum += n;

n += 2;

}

Desk check:

Initially 1st pass 2nd pass 3rd pass 4th pass

sum 0 0 + 1 0 + 1 + 3 0 + 1 + 3 + 5 0 + 1 + 3 + 5 + 7

n 1 1 → 3 3 → 5 5 → 7 7 → 9

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Questions to consider when writing while loops

Which objects need to be initialized before the loop begins?

Does the Boolean expression match what is needed? Have we
checked for off by one errors? (E.g., < vs <=)

Does the loop body do what is needed? Are the correct
objects updated during each pass?

Has a desk check been performed?

Will any of the objects declared in the loop body be needed
later in the program? (scope)

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Another while loop

int n = 1;

int sum = 0;

while (n < 7)

{

sum += n;

n++;

}

The object n increases by 1 on each loop iteration

n: 1→ 2→ 3→ 4→ 5→ 6→ 7

the loop body is performed 6 times, n = 1 through n = 6

When n = 7, execution drops out of the loop

Final value of sum:

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

An Equivalent while loop

int n = 1;

int sum = 0;

while (n <= 6)

{

sum += n;

n++;

}

The object n increases by 1 on each loop iteration

n: 1→ 2→ 3→ 4→ 5→ 6→ 7

the loop body is performed 6 times, n = 1 through n = 6

When n = 7, execution drops out of the loop

Final value of sum:

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Order of Statements is Important

int n = 1;

int sum = 0;

while (n <= 6)

{

n++;

sum += n;

}

How does switching the increment of n with the update
of sum change the outcome?

Iteration: Initial 1st 2nd 3rd 4th 5th 6th

n

sum

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

A while loop which counts down

int n = 7;

int sum = 0;

while (n > 0)

{

sum += n;

n--;

}

n decreases by 1 on each loop iteration

n: 7→ 6→ 5→ 4→ 3→ 2→ 1→ 0

the loop body is performed 7 times, n = 7 through n = 1

When n = 0, execution drops out of the loop

Final value of sum:

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Accumulating a Product

int n = 1;

int product = 1;

while (n <= 3)

{

product *= n;

n++;

}

Desk check:

Initially 1st 2nd 3rd

product 1 1× 1 1× 1× 2 1× 1× 2× 3
n 1 1→ 2 2→ 3 3→ 4

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Infinite Loops

Loops which have no chance of terminating are called infinite
loops. The type of errors which cause this will not be detected
by the compiler.

Possible Causes

Loop body doesn’t change objects tested in the loop
condition

Loop control object skips over the limit value

Loop control object moves away from the limiting value

Accidental use of = in place of ==

Accidental placement of semicolon after the loop header —
while (BooleanExpression); for (init ; test ; step);

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The for Statement

for (init ; test ; step)

{
statements to be repeated

}

Java evaluates a for statement by executing the steps:

1. Evaluate init, typically a control variable declaration

2. Evaluate test and exit from loop if the value is false

3. Execute the body of the loop

4. Evaluate step, which usually updates the control variable

5. Return to step 2 to begin the next loop cycle

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

for loop Flowchart

false

true

step

Loop Body

Init

test

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

These Loops Are Functionally Equivalent

for (init ; test ; step)

{
statements to be repeated

}

init;

while (test)

{
statements to be repeated

step;

}

The advantage of the for statement is that everything you
need to know to understand how many times the loop will

execute is explicitly included in the header line.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

To output the integers 1 . . . 10

as a while loop

int i = 1;

while (i <= 10){

println(i);

i++;

}

as a for loop

for (int i = 1; i <= 10; i++)

println(i);

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Summing multiples of 5

// Initialize data

int N = readInt("Enter an integer: ");

int Sum = 0;

// Sum multiples of 5

for (int i = 1; i <= N; i++)

Sum += 5*i;

// Display answer

println("The sum of the first " + N +

" multiples of 5 is " + Sum);

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Analyzing for Statement Headers

Describe the effect of each of the following:

1. for (int i = 1; i <= 10; i++)

2. for (int i = 0; i < N; i++)

3. for (int n = 99; n >= 1; n -=2)

4. for (int x = 1; x < 1024; x *= 2)

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Working with integers and a while loop

Give Java statements that:

Print the digits in an integer, n, in reverse order

Sum the digits in an integer, n

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Nested for Statements

The body of a control statement can contain other
statements, which are said to be nested within the control
statement.

Many applications require nested loops – for example,
displaying a checkerboard pattern.

The for loops in the Checkerboard program:

for (int row = 0; row < N ROWS; row++)
{

for (int col = 0; col < N COLUMNS; col++)
{

display row, col square

}
}

Because the entire inner loop runs for each cycle of the outer
loop, the program displays N ROWS × N COLUMNS squares.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The Checkerboard Program

// determine size of one square

double sqSize = (double) getHeight() / N_ROWS;

// Display an N_ROWS by N_COLUMNS grid

// Outside loop controls rows (and thus current y-value),

// from top to bottom

for (int row = 0; row < N_ROWS; row++)

{

// In current row, displays each block, left to right

for (int col = 0; col < N_COLUMNS; col++)

{

double x = col * sqSize;

double y = row * sqSize;

GRect sq = new GRect(x, y, sqSize, sqSize);

sq.setFilled((row + col) % 2 != 0);

sq.setFillColor(Color.RED);

add(sq);

} // end for col

} // end for row

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Example Executions

N ROWS = 5, N COLUMNS = 5

N ROWS = 8, N COLUMNS = 3

N ROWS = 3, N COLUMNS = 8, (window width modified to show entire board)

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Triangle Number Table

We wish to write a program that displays the sum of the first n
integers, as n runs from 1 to 10. Such numbers are called
triangle numbers:

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10

1 + 2 + 3 + 4 + 5 = 15

1 + 2 + 3 + 4 + 5 + 6 = 21

1 + 2 + 3 + 4 + 5 + 6 + 7 = 28

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Triangle Number Design Issues

Can the problem be solved with a single loop? Why / why not?

The outer loop has to run through each of the values from 1 to
the maximum, MAX.

Another loop is needed to print a series of values on each line.

print is similar to println, but doesn’t return the cursor to
the beginning of the next line.

The nth output line contains n values before the equal sign, but
only n− 1 plus signs. To avoid the problem of a ”+” sign after
the last term, we wait to print it after the inner loop has
finished.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

TriangleTable Program

// Display MAX_VALUE lines of initial triangle numbers

for (int line = 1; line <= MAX_VALUE; line++)

{ // Display current line

int total = 0;

for (int term = 1; term < line; term++)

{ // Display the current term’s value in the current line

print(term + " + ");

total += term;

}

// Last term (line), to avoid too many "+" signs

println(line + " = " + (total + line));

}

} // end of run()

// Constant declaration section

private static final int MAX_VALUE = 10;

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Simple Graphical Animation

Loops make it possible to implement simple graphical
animation.

The basic strategy is to create a set of graphical objects and
then execute the following loop:

for (int i = 0; i < N STEPS; i++) {
update GObjects by small amount;

pause(PAUSE TIME);

}

On each cycle of the loop, this pattern updates each animated
object by moving it slightly or changing some other property of
the object, such as its color. Each cycle is called a time step.

After each time step, pause is invoked to slow the animation
to human time. PAUSE TIME is an integer constant given in
milliseconds.

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

Taking One Step...

Q

∆x

y

SquareSize

S
q
u
a
r
e
S
i
z
e

P

∆

Suppose we want to move a square half its width and height.
How can we find ∆x , ∆y , and position Q?

Mat 2170
Chapter Four

– Part A

Control
Statements –

Iteration

Week 4

Review

Boolean

Control

Repeat
Patterns

while Loops

Infinite Loops

for Loops

Exercises

Nested Loops

Animation

The AnimatedSquare Program

// Move a square from the top-left corner to the bottom-right

// corner of the graphics window in N_STEPS

// Create and display square

GRect square = new GRect(0.0,0.0,SQUARE_SIZE,SQUARE_SIZE);

square.setFilled(true);

square.setFillColor(Color.RED);

add(square);

// Calculate displacement

double dx = (double) (getWidth() - SQUARE_SIZE) / N_STEPS;

double dy = (double) (getHeight() - SQUARE_SIZE) / N_STEPS;

// Animate square

for (int i = 0; i < N_STEPS; i++)

{

square.move(dx, dy);

pause(PAUSE_TIME);

} // end for-animation

	Week 4
	Review
	Boolean
	Control
	Repeat Patterns
	while Loops
	Infinite Loops
	for Loops
	Exercises
	Nested Loops
	Animation

