
Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Mat 2170
Week 7

Methods – Algorithms

Spring 2014

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Student Responsibilities

Reading: Textbook, Sections 5.2 – 5.5

Lab

Attendance

Overview Chapter Five, Sections 2 — 5:

5.2 Writing your own methods

5.3 Mechanics of the method–calling process

5.4 Decomposition

5.5 Algorithmic methods

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

5.2 Writing Our Own Methods

The general form of a method definition is:

scope type name (argument list)
{

statements in the method body
}

where

scope: indicates what blocks of code have access to the
method choices: public, private, or protected

type: indicates the type of value the method returns (if any)

name: is the name of the method

argument list: is the ordered list of declarations for the
variables used to hold the values of each argument

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Scope and Type

scope type name (argument list) {
statements in the method body

}

Scope: what code blocks have access?
1. The most common value for scope is private, which means

that the method is available only within its own class.

2. If other classes need access to the method, scope should be
public instead.

Type should be void if a method does not return a value.
Such methods are sometimes called procedures.

If a method has a return type other than void, then it must
return a value.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Returning Values from a Method

You can return a single value from a method by including a
return statement, which is usually written as:

return expression;

where expression is a Java expression that specifies the value
the method is to return

As an example, the method definition:

private double feetToInches (double feet) {
return 12.0 * feet;

}

converts an argument indicating a distance in feet to the
equivalent number of inches, and returns this calculated value
to the calling program.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Methods Involving Control Statements

The body of a method can contain statements of any type,
including control statements: for, while, if, and switch.

As an example, the following method uses an if statement to
find the larger of the two integer arguments:

private int MyMax (int x, int y) {
if (x > y)

{
return x;

}
else // x <= y

{
return y;

}
}

return statements can be used at any point in the method,
and may appear more than once, although only one will be
executed during a particular call.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

The factorial Method

The factorial of a number n (written as n!) is defined to be
the product of the integers from 1 to n. Thus, 5! is
1× 2× 3× 4× 5, or 120.

The following method definition uses a for loop to compute
the factorial function:

private int factorial (int n) {
int result = 1;

for (int i = 2; i <= n; i++)

{
result *= i;

}
return result;

}

Note here that the accumulator result stores a product rather
than a sum, so it must be initialized to 1 instead of 0.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Non–numeric Methods

Methods in Java can return values of any type. The following
method, for example, returns the English name of the day of
the week, given a number between 0(Sunday) and 6(Saturday):

private String weekdayName (int day) {
switch (day)

{
case 0: return "Sunday";

case 1: return "Monday";

case 2: return "Tuesday";

case 3: return "Wednesday";

case 4: return "Thursday";

case 5: return "Friday";

case 6: return "Saturday";

default: return "Illegal weekday";

}
}

(String is a class defined in the package java.lang.)
There is no need for a break statement following a return.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Methods Returning Graphical Objects

Textbook has examples of these types of methods.

The following method creates a filled circle centered at the
point (x , y), with a radius of r pixels, and is filled using the
color specified in the parameter list.

private GOval createFilledCircle (double x,

double y, double r, Color color) {
GOval circle = new GOval(x-r, y-r, 2*r, 2*r);

circle.setFilled(true);

circle.setColor(color);

return circle;

}

If you are creating a GraphicsProgram that requires many
filled circles in different colors, the createFilledCircle()

method turns out to save a considerable amount of code.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Predicate Methods

Methods that return a boolean value play an important role in
programming and are called predicate methods.

As an example, the following method returns true if the first
argument is divisible by the second, and false otherwise:

private boolean isDivisibleBy (int x, int y)

{
return x % y == 0;

}

Notice that when x is evenly divisible by y, true is returned,
otherwise false is returned — an if statement isn’t required in
this case.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Invoking Predicate Methods

Once you have defined a predicate method, you can use it just
like any other Boolean value.

For example, you can print the integers between low and high

that are divisible by 7 by running a for loop through the
integers [low..high] and checking which are divisible by 7:

for (int i = low; i <= high; i++)

{
if (isDivisibleBy(i, 7))

{
println(i);

}
}

Notice that numbers which aren’t divisible by 7 are simply
ignored.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Using Predicate Methods Effectively

While the following code is not incorrect, it is inelegant:

private boolean isDivisibleBy (int x, int y)
{
if (x % y == 0)
{

return true;
}
else
{

return false;
}

}

A similar problem occurs when beginning programmers include
an explicit comparison in an if statement to see if a predicate
method returns true.

Avoid redundant tests such as this:
if (isDivisibleBy(i, 7) == true)

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Method: Powers of Two

The following method takes an integer n and returns true if n
is a power of two, and false otherwise.

The powers of 2 are: 1, 2, 4, 8, 16, 32, and so forth; numbers
that are less than or equal to zero cannot be powers of two.

private boolean isPowerOfTwo (int n) {
if (n < 1) return false;

while (n > 1) {
if (n % 2 == 1) return false;

n /= 2;

}
return true;

}

If at any time it is discovered that the value is not a power of
2, false is returned. If execution drops out of the loop, then
the original number was a power of 2, and true is returned.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

5.3 Mechanics of the Method–Calling Process

When you invoke a method
the following actions occur:

The argument expressions are evaluated (in the context of
the calling method)

Each argument value is copied into the corresponding
parameter variable, which is allocated in a newly assigned
region of memory called a stack frame.

This assignment follows the order in which the arguments
appear: the first argument is copied into the first parameter
variable, and so on.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Mechanics of the Method–Calling Process, Cont.

The statements in the method body are evaluated (using the
new stack frame to look up the values of local variables).

When a return statement is encountered, it computes the
return value and substitutes that value in place of the original
call.

The stack frame for the called method is discarded, and
execution is returned to the calling program, continuing from
where it left off.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

The Combinations Function

To illustrate method calls, the text uses a function C (n, k) that
computes the combinations function — the number of ways
one can select k elements from a set of n objects.

Suppose, for example, that you have a set of five coins:

How many ways are there to select two coins?
penny + nickel nickel + dime dime + quarter quarter + dollar
penny + dime nickel + quarter dime + dollar
penny + quarter nickel + dollar
penny + dollar

for a total of 10 ways.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Combinations and Factorials

Fortunately, mathematics provides an easier way to compute
the combinations function than by counting out all the ways.

The value of the combinations function is given by the formula:

C (n, k) =
n!

k!× (n − k)!

Given that we already have a factorial() method, it is easy
to turn this formula directly into a Java method:

private int combinations (int n, int k)

{
return factorial(n) /

(factorial(k) * factorial(n−k));
}

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

The Combinations Program

public void run()

{

println("Program to calculate combinations");

int num = readInt("Enter number objects in set: ");

int chosen = readInt("Number to be chosen: ");

println("C(" + num + ", " + chosen + ") = " +

combinations(num,chosen));

}

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

5.4 Decomposition

One of the most important advantages of methods is that they
make it possible to break a large task down into successively
simpler pieces. This process is called decomposition.

Complete Task

Subtask 1 Subtask 2 Subtask 3

Subtask 2a Subtask 2b

Once you have completed the decomposition, you can then
write a method to implement each subtask.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Choosing a Decomposition Strategy

One of the most subtle aspects of programming is the process
of deciding how to decompose large tasks into smaller ones.

In most cases, the best decomposition strategy for a program
follows the structure of the real–world problem that program is
intended to solve.

If the problem seems to have natural subdivisions, those
subdivisions usually provide a useful basis for designing the
program decomposition.

Each subtask in the decomposition should perform a function
that is easy to name and describe.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Decomposition Goals

One of the primary goals of decomposition is to simplify the
programming process.

A good decomposition strategy must limit the spread of
complexity.

Each level in the decomposition should take responsibility for
certain details, and avoid having those details percolate up to
higher levels.

For example, in the program to calculate the combinations, the
problem was broken down to utilize the factorial() method.
Thus, the combinations() method was less cluttered and
easier to read.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

5.5 Algorithmic Methods

Methods are important in programming because they provide
a structure in which to express algorithms.

Algorithms are abstract expressions of a solution strategy.

Implementing an algorithm as a method makes that abstract
strategy concrete.

Algorithms for solving a particular problem can vary widely in
their efficiency — it makes sense to think carefully when
choosing an algorithm because making a bad choice can be
extremely costly.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Greatest Common Divisor

Section 5.5 in the text looks at two algorithms for computing
the greatest common divisor of two integers.

The GCD is defined to be the largest integer that divides evenly
into both

There is big difference in the efficiency of the two algorithms:
brute force vs Euclid’s algorithm.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Brute–Force Approach

Trying every possible solution is called a brute–force
strategy.

For the greatest common divisor, we can count backwards from
the smaller of the two numbers until we find a value that
divides both numbers evenly.

public int gcd(int x, int y) {
int guess = Math.min(x, y);

while (x % guess != 0 || y % guess != 0)

{
guess--;

}
return guess;

}

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

This gcd() algorithm must terminate for positive values of x
and y because the value of guess will eventually reach 1 if it
doesn’t stop before that.

At the point it terminates, guess must be the greatest
common divisor because the while loop will have already
tested all larger possibilities and discarded them.

Note that in the worst case, when the gcd(x, y) is 1, the
loop must iterate all the way from the smaller of the two
numbers down to 1.

Computing gcd(1000005, 1000000) results in almost a
million steps to obtain the answer, 5.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Euclid’s Algorithm

A better, more efficient algorithm can produce an answer more
quickly.

The mathematician Euclid of Alexandria described a more
efficient algorithm 23 centuries ago:

public int gcd(int x, int y) {
int r = x % y;

while (r != 0)

{
x = y;

y = r;

r = x % y;

}
return y;

}

Using Euclid’s algorithm, the gcd(1000005, 1000000) takes
two steps.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

How Euclid’s Algorithm Works

Euclid’s great insight was that the greatest common divisor of
x and y must also be the greatest common divisor of y and the
remainder when x is divided by y.

He was able to prove this proposition in Book VII of his
Elements

The next slide works through the steps geometrically to
illustrate the calculation when x is 78 and y is 33.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

An Illustration of Euclid’s Algorithm

Step 1: Compute the remainder of 78 divided by 33:
78

33 33 12
x
y

Step 2: Compute the remainder of 33 divided by 12:
33

12 912
x
y

Step 3: Compute the remainder of 12 divided by 9:
12
9 3

x
y

Step 4: Compute the remainder of 9 divided by 3:

3 3 3
9x

y

Because there is no remainder, the answer is 3.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Graphics: Arguments vs. Named Constants

In graphical programs there are two strategies for providing
methods with size and location information:

1. Use shared named constants to define the picture parameters

2. Pass the information as arguments to each method

Using named constants is easy, but relatively inflexible. If you
define constants to specify the location of an object, you can
only draw the object at that location.

Mat 2170
Week 7

Methods –
Algorithms

Week 7

Methods

Scope

return

Examples

Predicate
Methods

Mechanics

Decomposition

Algorithms

Graphics

Using arguments is more cumbersome, but makes it easier to
change such values.

It is best to find an appropriate trade–off between the two
approaches. The text recommends:

Use arguments when callers need to supply different values

Use named constants when there is a known satisfactory value

	Week 7
	Methods
	Scope
	return
	Examples
	Predicate Methods
	Mechanics
	Decomposition
	Algorithms
	Graphics

