
Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Mat 2170

The ArrayList Class

Spring 2014

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Student Responsibilities

Reminder: EXAM next Thursday, 4/24, at 7:00 pm
Picnic is Tuesday, 4/22 - get signed up.

Reading: Textbook, Chapter 11.8, The ArrayList class

Lab 13, utilizing the ArrayList class

Attendance

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Wrapper Classes

Java designers chose to separate primitive types from the
standard class hierarchy, mostly for efficiency reasons.

Primitive Java values take less space and allow Java to use
more of the capabilities provided by hardware.

However, there are times when the fact that primitive types
aren’t objects poses problems

(e.g., there are tools in the Java libraries that work only with
objects and not primitive types — one such is ArrayList).

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

To get around this problem, Java includes a wrapper class to
correspond to each of the following primitive types:

boolean ↔ Boolean float ↔ Float

byte ↔ Byte int ↔ Integer

char ↔ Character long ↔ Long

double ↔ Double short ↔ Short

All of the above primitive wrapper classes in Java are
immutable – their states (contents) cannot be modified
after they are created, only replaced.

The value stored in an instance of any of the wrapper classes
is an object, and we can use it in any context that requires
an object.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Boxing and Unboxing

Java SE 5.0 (and subsequent versions) automatically
converts values back and forth between a primitive type and
the corresponding wrapper class. These operations are called
boxing and unboxing.

For example, Integer maxItems = 5;

causes Java to call the Integer constructor, and is

equivalent to: Integer maxItems = new Integer(5);

Similarly, int nextMax = maxItems + 1;

is equivalent to: int nextMax = maxItems.intValue()+1;

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Storing Large Amounts of Data

It is often the case that in order to solve a problem by
computer, we need to be able to store an unknown and / or
a large number of data items.

It would be difficult to create individual names and storage
locations for each.

Therefore, programming languages such as Java offer ways to
store collections of data in various containers.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Introduction: Arrays

An array is a collection of individual data values
with two distinguishing characteristics:

1. An array is ordered
We must be able to count off the values — here is the first,
here is the second, and so on — just like Strings.

2. An array is homogeneous
Every value in the array must be of the same type.

Arrays are a primitive type in Java.
They do not have methods associated with them.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Array Terminology

An array is a java container object that holds a fixed
number of values of a single type.

The length of an array is established when the array is
created. After creation, its length is fixed.

The individual values in an array are called elements.

The type of object an array can hold is its element type.

Each element is identified by its position in the array
— also called its index —

which always begins at 0 and ends at length - 1
(Just like String objects.)

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Array Data Storage

The easiest way to visualize arrays is to think of them as a
linear collection of boxes, much like a row of Post Office
boxes, each of which is marked with its index number.
For example:

intArray:
0 1 2 3 4 5 6 7 8 9

where intArray was declared as an array of int of size 10.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

The ArrayList Class

The java.util package includes a class called ArrayList that
extends the usefulness of arrays by providing additional
operations and ease of use.

The ArrayList class is a wrapper for the primitive array

type — it encapsulates an array and provides methods for
accessing and interacting with it.

The ArrayList class hides the details of array manipulation.

All operations on an ArrayList object (and hence, the array
within) are accomplished using method calls.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Generic Types and Boxing/Unboxing

The element type of any ArrayList must be a Java class.

Automatic conversion of values between a primitive type and
the corresponding wrapper class allows an ArrayList object
to store primitive values by using their wrapper classes.

For example, to create a list of integers:

ArrayList <Integer> myList = new ArrayList<Integer>();

This statement invokes a constructor to create an ArrayList
of Integer.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Accessing the Inner int

Then we may store and access int values in myList through
automatic boxing and unboxing:

In this statement, Java uses boxing to enclose 42 in a
wrapper object of type Integer:

myList.add(42);

Here, the statement unboxes the Integer to obtain the int

equivalent:

int answer = myList.get(0);

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Back to the ArrayList Class

A new ArrayList object is created by calling the ArrayList
constructor, for example:

ArrayList<String> myNames = new ArrayList<String>();

It is a really good idea to specify the element type, such as
<String> in the example above, in angle brackets when
invoking the constructor.

Doing this allows Java to check for the correct element type
when set() is called, and eliminates the need for a type cast
when get() is called.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Generic Types in Java

In the summary of ArrayList methods which follows, the
notation < T > indicates the base or element type of the
ArrayList object.

In other words, the type parameter < T > is a placeholder
for the element type used in the array.

Class definitions that include a type parameter are called
generic types.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

ArrayList Methods

boolean add(<T> element)

Adds a new element to the end of the ArrayList;

the return value is always true

void add(int index, <T> element)

Inserts a new element into the ArrayList;

before the position specified by index

<T> remove(int index)

Removes the element at the specified position and

returns that value

boolean remove(<T> element)

Removes the first instance of element, if it appears;

returns true if a match is found

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

void clear()

Removes all elements from the ArrayList

int size()

Returns the number of elements in the ArrayList

<T> get(int index)

Returns the object at the specified index

<T> set(int index, <T> value)

Sets the element at the specified index to the new

value and returns the old value

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

indexOf(<T> value)

Returns the index of the first occurrence of the

specified value, or −1 if it does not appear

boolean contains(<T> value)

Returns true if the ArrayList contains the

specified value

boolean isEmpty()

Returns true if the ArrayList contains no elements

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Cycling through ArrayList Elements

One of the most useful things about element selection in an
ArrayList is that the index does not have to be a constant —
in many cases we use the control object of a for loop.

The standard for loop pattern that cycles through each of
the ArrayList elements:

for (int i = 0; i < myList.size(); i++) {
Operations involving the i th ArrayList element}

As an example, we can reset every element in intList to
twenty-nine using the following:

for (int i = 0; i < intList.size(); i++) {
intList.set(i, 29);}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Human–Readable Index Values

The fact that Java starts index numbering at zero
can be confusing and should be hidden from users.

There are two standard approaches for shifting
between Java and human–readable index numbers:

1. Use Java’s index numbers internally, but add one
whenever those numbers are presented to the user.

2. Use index values beginning at 1 and ignore element 0 in
each array.

This requires allocating an additional element for each array,
but has the advantage that the internal and external index
numbers correspond.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

The Auto–increment Operator, ++

A program uses the auto–increment operator in various
statements in the following form:

pegs.set(pegIndex++, new GPoint(x, y));

The pegIndex++ expression adds one to pegIndex just as
it has all along. The question is: what value is used as the
index? It depend on the location of the ++.

Object++ : the object is incremented after the value of the
expression is determined.

++Object : the object is incremented first, then the new
value is used in context.

The auto–decrement operator (--) behaves similarly.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Creating an indexed ArrayList

import acm.program.*;

import java.util.*;

public class FillArrayList extends ConsoleProgram {

public void run()

{

println("This program fills an ArrayList with " +

"values matching the indices.");

int listLength = readInt("How large would you like\n"

+ " your list? Enter length: ");

// method returns a filled list

ArrayList<Integer> myList = indexIntArrayList(listLength);

printIntArrayList(myList);

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Filling an Indexed ArrayList

private ArrayList<Integer> indexIntArrayList(int n) {

// create an empty list of Integers

ArrayList<Integer> theList = new ArrayList<Integer>();

// Fill the list with values that match the indices

for (int cnt = 0; cnt < n; cnt++){

theList.add(cnt);

}

// return the indexed list

return theList;

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Printing an ArrayList of Integers

private void printIntArrayList(ArrayList<Integer> theList) {

// Display each value in the list, separated by commas and

// surrounded by brackets, with 15 per line

print("[");

for (int cnt = 0; cnt < theList.size(); cnt++){

print(theList.get(cnt));

if (cnt != theList.size()-1) {

print(", ");

if ((cnt % 15) == 0)

println();

}

}

println("]");

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Passing ArrayList Objects as Parameters

When an ArrayList is passed as a parameter to a method or is
returned by a method as a result, only the reference to the
object is actually passed between the methods.

Since the reference, or address, of the array is passed in, the
elements of an array are effectively shared between the caller
and callee.

If a method changes an element of an array passed as a
parameter, that change will persist after the method returns.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Reversing an ArrayList

import acm.program.*;

import java.util.*;

public class ReverseArrayList extends ConsoleProgram {

public void run()

{

println("This program reverses the elements " +

"in an ArrayList.");

println("Use " + SENTINEL + " to signal the " +

"end of the list.");

ArrayList<Integer> myList = readIntArrayList();

reverseArrayList(myList);

printIntArrayList(myList);

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

readIntArrayList()

/* Reads the data from the user into the list */

private ArrayList<Integer> readIntArrayList()

{

ArrayList<Integer> list = new ArrayList<Integer>();

int value = readInt(" ? ");

while (value != SENTINEL)

{

list.add(value);

value = readInt(" ? ");

}

return list;

}

/* Private constant --- Define the end-of-data value */

private static final int SENTINEL = 0;

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

reverseArrayList() & swapElements()

/* Reverses the data in an ArrayList */

private void reverseArrayList(ArrayList<Integer> list)

{

for (int i = 0; i < list.size() / 2; i++)

{

swapElements(list, i, list.size() - i - 1);

}

}

/* Exchanges two elements in an ArrayList */

private void swapElements(ArrayList<Integer> list,

int p1, int p2)

{

int temp = list.get(p1);

list.set(p1, list.get(p2));

list.set(p2, temp);

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Lab 13

There are two projects assigned in Lab 13:

1. ArrayListStats : finding max, min, average, and standard
deviation of a list of integer values entered by the user

2. TemperatureStats : which does the same for a list of random
Temperature objects.

The standard deviation of a list of values is given by:

σ =

√∑n
i=1 (µ− xi)2

n
where:

the xi are the list elements
n is the length of the list∑n

i=1 (µ− xi)
2 is the sum of the squares of the average minus

each list element

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Lab 13 Notes

Pay close attention to the instructions in the lab write–up.

When the user is asked if they wish to continue, your program
must require that they enter a ’y’, ’Y’, ’n’, or ’N’, using one or
more methods.

If the user answers ’y’ or ’Y’, repeat execution, otherwise
display a final message indicating end of the program has been
reached.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Using Arrays for Tabulation

Arrays are very useful when we have a set of data values and
need to count how many of them fall into each of a given,
finite set of ranges.

This process is called tabulation.

Tabulation uses arrays in a slightly different way from those
applications that use them to simply store a list of data.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Tabulation

When a tabulation program is implemented, each data value is
used to compute an index into an integer array that counts
how many values fall into that category.

The example of tabulation used in the text is a program that
counts how many times each of the 26 letters of the English
alphabet appears in a sequence of text lines.

Such a program would be useful in solving codes and ciphers.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Cryptograms

A cryptogram is a puzzle in which a message is encoded by
replacing each letter in the original text with some other letter
— with the substitution pattern remaining the same
throughout the message.

The usual strategy for solving a cryptogram:

Assume that the most common letters in the coded
message correspond to the most common letters in
English.

The most common letters: E, T, A, O, I, N, S, H, R, D, L, U
(which won’t be a surprise if you’ve seen Wheel of Fortune)

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Implementation Strategy

Instead of counting each of the characters by hand, it would be
much easier to have a program to do the job — type in a
coded message, and out pops a table showing how often each
letter appears. . .

Basic Idea: count letter frequencies by using an array with 26
elements to count the number of times each letter appears.

As the program processes the text, it increments the array
element that corresponds to each letter.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Implementation Concept

3 5 8 14 17 18 19 20

21 1 0 0 00 1 0 2 00 00 0 0 0 0 0 1111 0 0 0

TWAS BRILLIG

1 2 4 6 7 9 25242322211615131211100

GA B C D E F H I J K L M N O P Q R S T U V W X Y Z

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Create a table of letter frequencies

public class LetterFrequencies extends ConsoleProgram {

public void run()

{

println ("This program counts letter frequencies.");

println ("Empty line indicates end of input.");

initFrequencyTable();

String line = readLine("Enter text to scan: ");

while(line.length() > 0)

{

countLetterFrequencies(line);

line = readLine("Enter next line, blank to exit: ");

}

printFrequencyTable();

}

// private global data member:

private ArrayList<Integer> frequencyTable;

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

// Initialize list of 26 counters, setting each to zero

private void initFrequencyTable()

{

frequencyTable = new ArrayList<Integer>();

for(int i = 0; i < 26; i++)

frequencyTable.add(0);

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

// Count the letter frequencies in a line of text

// basing the table index on each character’s place in

// the alphabet, and incrementing the associated cell.

private void countLetterFrequencies(String line)

{

for (int i = 0; i < line.length(); i++)

{

char ch = line.charAt(i);

if (Character.isLetter(ch))

{

int index = Character.toUpperCase(ch) - ’A’;

frequencyTable.set(index, frequencyTable.get(index)+1);

}

}

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

// Display frequency table - using characters

// to step through the indices

private void printFrequencyTable()

{

for (char ch = ’A’; ch <= ’Z’; ch++)

{

int index = ch - ’A’;

println(ch + ": " + frequencyTable.get(index));

}

}

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Constant Lookup Tables

One of the most common applications of array initialization is
to create constant arrays, called lookup tables, which are used
to look up a value by its index number.

Suppose we use the integers 1 through 12 to represent the
names of the months from January to December.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Constant Lookup Tables

Easily convert these integers to the corresponding month name
by declaring and initializing the table:

ArrayList<String> MonthNames = new ArrayList<String>();

Collections.addAll(MonthNames, "Null", "January", "February",

"March", "April", "May", "June", "July", "August",

"September", "October","November", "December");

The expression MonthNames.get(monthNumber) can then
be used to convert a numeric month to its name, as long as
you ensure that month lies in the correct range.

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Looking Up the Month

println("This program will give you the name of the month");

println(" given its number. For example, month 1 is January");

int which = readInt("Give me a month number " +

" [1..12], -1 to quit: ");

while (which != -1) {

if (1 <= which && which <= 12) {

println("Your month for " + which +

" is: " + MonthNames.get(which));

}

else println("That value is not in range.");

which = readInt("Give me a month number, -1 to quit: ");

}

println("Thanks for using my program! Bye.");

Mat 2170

The ArrayList
Class

Week 13

Wrappers

Arrays

ArrayLists

Generic Types

Patterns

Examples

Parameters

Lab 13

Using Lists

Class
Exercises

Exercises. Write methods to:

1. Sum an ArrayList, bob, of integers

2. Find the partial sums of an ArrayList, myList, of integers

3. Produce a copy of an ArrayList, dList, of floating point
values with all non–positive numbers deleted

4. Find the product of an ArrayList, fracList, of Rational
objects

	Week 13
	Wrappers
	Arrays
	ArrayLists
	Generic Types
	Patterns
	Examples
	Parameters

