
Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Week 15

Exceptions, Sorting, Searching & Review

Spring 2014

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Student Responsibilities

Reading: Textbook, Chapter 12.1 – 12.3

Lab is a participation lab this week – show up and get a
finch to move, light up, and say something, then show me.

Lab 14 is due no later than 4:00 pm Friday

Attendance

Study for finals: review old exams, quizzes, labs, assigned
reading, and handouts — and remember to:

Get some sleep!

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Exception Handling – a Short Intro

There are some runtime situations which cause a Java
program to “crash.” Examples include:

division by zero

attempting to access an array with an index which is out of
its bounds

attempting to dereference a null pointer

These types of problems are called exceptions.

When a Java method encounters a problem during
execution, it responds by throwing an exception — this is
the process of reporting an exceptional condition outside
the normal program flow.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Runtime Exceptions

When an exception is thrown, the Java runtime system:

stops executing code at that point

begins searching backwards for methods on the control
stack — starting with the current method and proceeding to
the method which called it, and so forth

until it finds a method that expresses the intent to
catch such an exception if one is thrown

Most runtime exceptions do not need to be caught — the
exception will simply propagate backwards on the control
stack, eventually causing the program to halt.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

try & catch()

On the other hand, attempting to access an input file which
doesn’t exist, for example, is a different situation.

Programmers who use the java.io package are required
(i.e., forced) by Java to check for the exceptions that the
methods in that package throw.

Thus, the code to open and read a file in Java is not
complete unless it explicitly catches exceptions propagated
from the IOException class.

The code that works with data files must appear inside a
try statement, with an associated catch() statement.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

try - catch() Syntax

try

{
// code in which an exception might occur

}

catch (type identifier)

{
// code to respond to the exception

}

Where:

type is the type of the exception

identifier is the name of a variable that hold the exception
information

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

File Opening Example

try

{
code to open and read the file

}

catch (IOException ex)

{
code to respond to exceptions that occur

}

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

InputFile Class by Dr. Mertz — Examples

/** Read an entire line from the file. Returns null if an

* error occurs or the end of the file is reached.

* @return the next line of text from the file */

public String readLineFromFile(){

if (buffer == null) { // connection to file failed

showErrorDialog(NO_FILE_ERROR);

return null;

}

try {

return buffer.readLine();

}

catch (IOException ex) {

showErrorDialog(FILE_IO_ERROR);

return null;

}

}

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

/** Tries to read next word and convert it into an Integer.

* The converted value (or null if error) is returned. */

public Integer readIntegerFromFile() {

if (buffer == null) { // no file connected to buffer

showErrorDialog(NO_FILE_ERROR);

return null;

}

String word = readWordFromFile();

if (word == null) { return null; }

try { return Integer.valueOf(word); }

catch (NumberFormatException ex) {

showErrorDialog(word + " is not an integer!");

return null;

}

}

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Searching

Given a list of items, it is often the case that we need to
search the list for a specific value.

One example might be finding Aunt Sally’s address among
your list of family and friends.

Something that impacts how we search is whether or not
the list is in order.

Looking someone up by their last name in a phone book is
different than looking for their information on scraps of
paper stuffed in your backpack.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Types of Searches

In a Linear search, we start at the beginning and work our
way through the entire list one item at a time until we either
find what we’re looking for, or we reach the end of the list.

Linear search can be used on any list.

If a list is sorted, we can use a Binary search:

check the middle value of the list
If we find what we’re looking for, we’re done.
If we don’t, then we can throw half the list away and look in
the middle of the half–list we now have.
This process continues until we find what we’re looking for,
or the current list is empty.

Binary search can only be used on sorted lists.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Linear Search Algorithm

Mark the region in the list to search

while (the region is not empty) {

probe the first entry of the region

if (Target is found){

note the location

return true

}

else

go on to the next entry, decrease the region

}

if we get to this point, the region is empty

yet we still have not found the target, so {

set location to an impossible value

return false

}

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Linear Search: Marking a Region

0

!= Target

Low L.size()−1

Low began at 0. Search is partially completed.

The cyan region to the left of Low has already been considered
and does not contain the Target.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Linear Search: Worst Case Number of Probes

For an ArrayList of size n,
linear search makes at most n probes (comparisons).

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Searching a Temperature List: Linear Search

public static boolean LinearSearch(

ArrayList<Temperature> L,

Temperature Target,

Integer Location){

int Low = 0;

while (Low < L.size()) {

// Target is found

if (Target.isEqual(L.get(Low))

{

Location = Low;

return true;

}

else // Target may be in right-hand section

Low++; // Discard mismatch

}

Location = L.size(); // Target not in list

return false;

}

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Linear Search: Integer List Example

62 7553514942403229262220161410

Low = 0

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 16

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 16Low = 1

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 16Low = 2

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Searching a Sorted list: Binary Search Algorithm

Mark the region to search

while (the region is not empty) {

probe near the middle of the region

if (found)

note the location, return true

else

shrink the region by discarding

the lower or upper portion as appropriate

}

set location

return false

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Searching a Sorted list: Marking a Region

< Target > Target

L.size()−1HighLow0

Low began at 0, High at L.size()-1.
Search is partially completed.

The cyan regions to the left of Low and right of High have
already been considered and do not contain the Target.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Binary Search: Worst Case Number of Probes

For a list of size n, binary search makes at most blog2(n)c+ 1
probes or comparisons.

n Linear Binary

22 − 1 = 3 3 2

23 − 1 = 7 7 3

24 − 1 = 15 15 4

25 − 1 = 31 31 5
...

...
...

210 − 1 = 1023 1023 10
...

...
...

220 − 1 = 1048575 1048575 20

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Searching a Sorted list: Binary Search

int Low = 0;

int High = L.size()-1;

int Middle;

while (Low <= High) {

Middle = (Low + High)/2; // Probe near the middle

if (Target.isEqual(L.get(Middle))){

Location = Middle; // Found Target

return true;

}

else if (Target.isLess(L.get(Middle)))

High = Middle - 1; // Discard right-hand section

else // Target.isGreater(L.get(Middle))

Low = Middle + 1; // Discard left-hand section

}

Location = Low; // Target not in list

return false;

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Binary Search Example 1

62 7553514942403229262220161410

Target = 49Low = 0 Middle = 7High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

62 7553514942403229262220161410

Target = 49High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 11

62 7553514942403229262220161410

Target = 49High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 9

62 7553514942403229262220161410

Target = 49High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Middle = 10Low = 10

Location = 10

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Binary Search Example 2

62 7553514942403229262220161410

Low = 0 Middle = 7High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

Target = 47

62 7553514942403229262220161410

Target = 47High = 14

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 11

62 7553514942403229262220161410

Target = 47High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 9

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

62 7553514942403229262220161410

Target = 47High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 8 Middle = 9

62 7553514942403229262220161410

Target = 47High = 10

1 2 3 4 5 6 7 8 9 11 12 1310 140

Middle = 10Low = 10

62 7553514942403229262220161410

Target = 47

1 2 3 4 5 6 7 8 9 11 12 1310 140

Low = 10 High = 9 (Middle = 10)

Location = 10

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Inserting a New Value into a Primitive Array

NewItem

Position

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Inserting a New Value: Example

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

Position = 10New Item = 47

15

62 7553514942403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

NewItem = 47 Position = 10

15

75

42403229262220161410

1 2 3 4 5 6 7 8 9 11 12 1310 140

NewItem = 47 Position = 10

15

7562535149

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Insertion Sort: Example

28 1 38

8

8

8

8

2

2

2

1

1 3

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Using Search and Insert:
Insertion Sort with ArrayList

public static void InsertionSort(ArrayList<Integer> L) {

// Save a copy of the list

ArrayList<Integer> Original = new ArrayList<Integer>();

for (int i = 0; i < L.size(); i++) {

Original.add(L.get(i));

}

// Remove all entries from the parameter vector

L.clear();

// Insert back into the given vector from the copy, one

// element at a time, using Search to find correct location

int Place;

for (int i = 0; i < Original.size(); i++) {

Search(L, Original[i], Place);

Insert(L, Original[i], Place);

}

}

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Course Review

Algorithm
Step-by-step method for solving a problem

All steps must be unambiguous and executable

Must terminate with the correct outcome

Object
Encapsulates “state” and “behavior” in one entity

examples:

a string of characters

a rectangle in a graphics system

an Angle class object

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Data Types

Primitive types

int

double

char

boolean

. . .

Types defined by a Class

String

GRect

GPoint

ArrayList

Rational

Integer

. . .

A reminder: Don’t forget to watch for integer division!

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Control Structures: Selection

The if statement:

if (booleanExpression)

statement;

if (booleanExpression)

statement1;

else

statement2;

if statements can be nested

switch statements

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Control Structures: Iteration

the while loop

while (BooleanExpression)

{

statements;

}

the for loop

for (InitExpr; BoolExpr; UpdateExpr)

{

statements;

}

loops can be nested

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Classes

Composed of data members (storage) and member
methods (messages)

Members may be public or private (or protected)

A class may be derived from another class using inheritance

Examples of classes:
GRect, String, RandomGenerator, GSmartCircle,

Integer, ArrayList, and Rational

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Messages

Objects of a class can respond to “messages”

To send a message, we identify a receiver (unless inside a
class and sending to self)

. . . and the message, including any required parameters

Examples:

println(R.getWidth())

R.setColor(Color.BLUE)

rgen.nextInt(low, high)

(getX() < 0 || (getX() + getWidth() > window.getWidth()))

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Methods

“Black box view” — what do we want the method to do?

“Glass box view” — how does the method achieve its goal?

The method header spells out the interface details:

The accessibility — public, protected, or private

Optional: if the method is static

The type of the return value (void, if none)

The name of the method

The details about parameters:

The order, number and type of each parameter

The implementation spells out the full details of how it does
its job

Invoking methods inside (object) vs outside (client) a class.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Invoking Methods

void methods typically cause some action to occur

Methods with a return value typically compute some value

A client of Static methods in a class must use the class
name as the ”receiver”

Some examples:

char c = Character.toUpperCase(SomeChar);

double y = Math.sqrt(x);

int z = myMin(a, b, c);

Display(a, b, c);

Collections.sort(MyList);

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

ArrayList

A contiguous list of items, all of the same type

First valid index of ArrayList X is 0

Last valid index is X.size()-1

Common messages:

size()

clear(), remove(ndx)
add(value)

get(ndx)

set(ndx, value)

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Searching

Linear search sequentially probes a search region, comparing
its items to the target

Binary search reduces the search region by half on each
probe

unsorted ArrayList — linear search

sorted ArrayList — binary search

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Sorting

There are many different sorts —

Insertion
Selection
Bubble
Heap
Quick
Bucket, etc. (Advertisement: take MAT 2670!)

Insertion sort uses binary search to locate the insertion
position.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Design A Header For A Method Which. . .

Tests whether or not a given integer is a prime number.

Determines the number of prime numbers k in the closed
interval [L,U].

Determines the number of radians in an angle which is
specified in degrees.

Replaces every occurrence of a blank in a String with a
hyphen.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Replaces every occurrence of one specified character in a
String with another character.

Determines the number of hyphens in a given String.

Determines the midpoint of two specified points in the
plane.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Design An Implementation For A Method Which. . .

Given a sorted ArrayList A, creates an ArrayList B

which is sorted in reverse order

Given two points, P1 and P2, finds the point which is r% of
the way from P1 to P2.

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Given a String S, modifies it so all alphabetic characters
in it are lowercase

Given C, an ArrayList of characters, modifies it so all
alphabetic characters in it are lowercase

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Designing Derived Classes

Desired: A class derived from the GLine class to create a
rotating line

Data Members: a pause time, dx, and dy (for the end point
of the line)

Constructor : start x, start y, end x, end y, pause time, dx,
dy, and color

Constructor : end x, end y, and defaults of start x and start
y equal 0.0, pause time of 50, dx and dy of 2.0, and color
blue

move() : reset the end point by dx and dy, then pause
setEndPoint() and getEndPoint() are available

Week 15

Exceptions,
Sorting,

Searching &
Review

Week 15

Exceptions

Linear Search

Binary Search

Insert

Insertion Sort

Review

Designing A Class From Scratch

Desired: A new class which represents the menu items at a
fast food place, and a list of such items

Item: name, carbs, calories, cost with inspectors and
mutators

List: of Items with methods: total items, total carbs, total
calories, total cost

	Week 15
	Exceptions
	Linear Search
	Binary Search
	Insert
	Insertion Sort
	Review

