Solve the following Recurrence relations. Write your answers on a separate paper.

- 1. $a_n = -a_{n-1} + 6a_{n-2}, n \ge 2, a_0 = -1, a_1 = 8$ 2. $a_n = 5a_{n-1} + 6a_{n-2}, n \ge 2, a_0 = 1, a_1 = 3$ 3. $a_n = \frac{11}{2}a_{n-1} - \frac{5}{2}a_{n-2}, n \ge 0, a_0 = 2, a_1 = -8$ 4. $a_n = a_{n-2}, n \ge 2, a_0 = 0, a_1 = 3$ 5. $a_n = 6a_{n-1} - 9a_{n-2}, n \ge 2, a_0 = 5, a_1 = 12$
- 6. $a_n = -3a_{n-1} 2a_{n-2}, n \ge 2, a_0 = 1, a_1 = 3$
- 7. If $a_0 = 0$, $a_1 = 1$, $a_2 = 4$, and $a_3 = 37$ satisfy the recurrence relation $a_n + ba_{n-1} + ca_{n-2} = 0$, where $n \ge 0$ and b, c are constants, determine b, c, and solve for a_n .
- 8. For $n \ge 0$, let a_n count the number of ways a sequence of 1's and 2's will sum to n. For example, $a_3 = 3$ because (1) 1, 1, 1; (2) 1, 2; and (3) 2, 1 sum to 3. Find and solve a recurrence relation for a_n .