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Student Responsibilities — Week 2

I Reading: Textbook, Sections 1.5 – 1.6

I Assignments: as given in the Homework Assignment list
(handout) — Secs. 1.5 & 1.6

I Attendance: Dryly Encouraged

Week 2 Overview

I Finish up 1.1–1.4

I 1.5 Rules of Inference

I 1.6 Introduction to Proofs

Negating Quantifiers

Care must be taken when negating statements with quantifiers.

Negations of Quantified Statements

Statement Negation

All do Some do not

(Equivalently: Not all do)

Some do None do

(Equivalently: All do not)

Practice with Negation

What is the negation of each statement?

1. Some people wear glasses.

2. Some people do not wear glasses.

3. Nobody wears glasses.

4. Everybody wears glasses.

5. Not everybody wears glasses.

Some Notes of Interest

I DeMorgan’s Laws:

¬(p ∧ q) ≡ ¬p ∨ ¬q ¬(p ∨ q) ≡ ¬p ∧ ¬q

I p → q is false only when p is true and q is false

I p → q ≡ ¬p ∨ q

I The negation of p → q is p ∧ ¬q



Which Are Equivalent?

Direct Inverse Converse Contrapositive

p q ¬p ¬q p → q ¬p → ¬q q → p ¬q → ¬p
T T F F

T F F T

F T T F

F F T T

1.5 Rules of Inference
Theorems, Lemmas, & Corollaries

I A theorem is a valid logical assertion which can be proved
using:

I other theorems

I axioms : statements given to be true

I Rules of Inference : logic rules which allow the deduction of
conclusions from premises.

I A lemma is a pre–theorem or result which is needed to
prove a theorem.

I A corollary is a post–theorem or result which follows directly
from a theorem.

Mathematical Proofs

I Proofs in mathematics are valid arguments that establish the
truth of mathematical statements.

I Argument : a sequence of statements that ends with a
conclusion.

I Valid : the conclusion or final statement of the argument
must follow from the truth of the preceding statements, or
premises, of the argument.

I An argument is valid if and only if it is impossible for all the
premises to be true and the conclusion to be false.

If it rains, then the squirrels will hide

It is raining.

-----------------------------------------

The squirrels are hiding.

p = it rains / is raining

q = the squirrels hide / are hiding

Premise 1: p → q Premise 2: p Conclusion: q

Associated Implication: ((p → q) ∧ p)→ q

p q ((p → q) ∧ p)→ q

T T

T F

F T

F F

Are the squirrels hiding?

If you come home late, then you are grounded.

You come home late.

---------------------------------------------

You are grounded.

p =

q =

Premise 1:

Premise 2:

Conclusion:

Associated Implication:

p q

T T

T F

F T

F F

Are you grounded?

Modus Ponens — The Law of Detachment

Both of the prior examples use a pattern for argument called
modus ponens, or The Law of Detachment.

p → q
p

------

q

or

((p → q) ∧ p) → q

Notice that all such arguments lead to tautologies, and therefore
are valid.



If a knee is skinned, then it will bleed.

This knee is skinned.

-----------------------------------------

It will bleed.

p =

q =

Premise 1:

Premise 2:

Conclusion:

Associated Implication:

p q
T T
T F
F T
F F

(Modus Ponens) – Did the knee bleed?

Modus Tollens — Example

If Frank sells his quota, he’ll get a bonus.

Frank doesn’t get a bonus.

-------------------------------------

Frank didn’t sell his quota.

p =

q =

Premise 1: p → q Premise 2: ∼ q Conclusion: ∼ p

Thus, the argument converts to: ((p → q) ∧ ∼ q) → ∼ p

p q ((p → q) ∧ ∼ q) → ∼ p

T T

T F

F T

F F

Did Frank sell his quota or not?

Modus Tollens

An argument of the form:

p → q
∼ q

------

∼ p

or

((p → q) ∧ ∼ q) → ∼ p

is called Modus Tollens, and represents a valid argument.

If the bananas are ripe, I’ll make banana bread.

I don’t make banana bread.

-------------------------------------

The bananas weren’t ripe.

p =

q =

Premise 1: p → q Premise 2: ∼ q Conclusion: ∼ p

Thus, the argument converts to: ((p → q) ∧ ∼ q) → ∼ p

p q ((p → q) ∧ ∼ q) → ∼ p

T T

T F

F T

F F

Were the bananas ripe or not?

Other Famous Rules of Inference

p
∴ p ∨ q Addition

p ∧ q
∴ p Simplification

p → q
q → r
∴ p → r Hypothetical syllogism

p ∨ q
¬p
∴ q Disjunctive syllogism

p
q
∴ p ∧ q Conjunction

(p → q) ∧ (r → s)
p ∨ r
∴ q ∨ s Constructive dilemma

Rules of Inference for Quantifiers

∀xP(x)

∴ P(c) Universal Instantiation (UI)

P(c) (for arbitrary c)

∴ ∀xP(x) Universal Generalization (UG)

P(c) (for some c)

∴ ∃xP(x) Existential Generalization

∃xP(x)

∴ P(c) (for some c) Existential Instantiation

I In Universal Generalization, x must be arbitrary.

I In Universal Instantiation, c need not be arbitrary but often is
assumed to be.

I In Existential Instantiation, c must be an element of the
universe which makes P(x) true.



Proof Example

Every human experiences challenges.

Kim Smith is a human.

-------------------------------------

Kim Smith experiences challenges.

H(x) = x is a human

C(x) = x experiences challenges

k = Kim Smith, a member of the universe

Predicate 1: ∀x [H(x)→ C(x)] Predicate 2: H(k) Conclusion: C(k)

The proof:

(1) ∀x [H(x)→ C(x)] Hypothesis (1)

(2) H(k)→ C(k) step (1) and UI

(3) H(k) Hypothesis 2

(4) C(k) steps 2 & 3, and Modus Ponens

Q.E.D.

Fallacies

Fallacies are incorrect inferences.

An argument of the form:

p → q
∼ p

------

∼ q

or

((p → q) ∧ ∼ p) → ∼ q

is called the Fallacy of the Inverse or Fallacy of Denying the
Antecedent, and represents an invalid argument.

Fallacy of the Inverse — Example

If it rains, I’ll get wet.

It doesn’t rain.

-------------------------------------

I don’t get wet.

p =

q =

Premise 1: p → q Premise 2: ∼ p Conclusion: ∼ q

Thus, the argument converts to: ((p → q) ∧ ∼ p) → ∼ q

p q ((p → q) ∧ ∼ p) → ∼ q

T T

T F

F T

F F

Did I get wet?

Did the Butler Do It?

If the butler is nervous, he did it.

The butler is really mellow. (i.e., not nervous)

Therefore, the butler didn’t do it.

Translate into symbols:

Another Type of (Invalid) Argument

If it rains, then the squirrels hide.

The squirrels are hiding.

-------------------------------------

It is raining.

p = it rains / is raining

q = the squirrels hide / are hiding

Premise 1: p → q Premise 2: q Conclusion: p

Thus, the argument converts to: ((p → q) ∧ q) → p

p q ((p → q) ∧ q) → p

T T

T F

F T

F F

(Fallacy of the Converse) — Is it raining?

Fallacy of the Converse

An argument of the form:

p → q
q

------

p

or

((p → q) ∧ q) → p

is sometimes called the Fallacy of the Converse or Fallacy of
Affirming the Consequent, and represents an invalid argument.



Begging the Question aka Circular Reasoning

Circular Reasoning occurs when the truth of the statement being
proved (or something equivalent) is used in the proof itself.

For example:

Conjecture: if x2 is even then x is even.

Proof:
If x2 is even, then x2 = 2k for some k . Then x = 2m for some m.
Hence, x must be even.

Synopsis of Some Argument Forms

VALID
Modus Modus Disjunctive Hypothetical
Ponens Tollens Syllogism Syllogism
p → q p → q p ∨ q p → q
p ∼ q ∼ p q → r

q ∼ p q p → r

INVALID
Fallacy of Fallacy of
the Converse the Inverse
p → q p → q
q ∼ p

p ∼ q

Valid or Invalid?

Either you get home by midnight, or you’re grounded.

You aren’t grounded.

-------------------------------------

You got home by midnight.

p =

q =

Premise 1: p ∨ q Premise 2: ∼ q Conclusion: p

Thus, the argument converts to: ((p ∨ q) ∧ ∼ q) → p

Did you get home by midnight?

Argument type:

Valid or Invalid?

If you’re good, you’ll be rewarded.

You aren’t good.

-------------------------------------

You aren’t rewarded.

p =

q =

Premise 1: p → q Premise 2: ∼ p Conclusion: ∼ q

Thus, the argument converts to: ((p → q) ∧ ∼ p) → ∼ q

Are you rewarded?

Argument type:

Valid or Invalid?

If you’re kind to people, you’ll be well liked.

If you’re well liked, you’ll get ahead in life.

--------------------------------------------------

If you’re kind to people, you’ll get ahead in life.

p = you’re kind to people

q = you’re well liked

r = you get ahead in life

Premise 1: p → q Premise 2: q → r Conclusion: p → r

Thus, the argument converts to:
((p → q) ∧ (q → r)) → (p → r)

Argument type:

Valid or Invalid?

If you stay in, your roommate goes out.
If your roommate doesn’t go out, s/he will finish

their math homework.
Your roommate doesn’t finish their math homework.
Therefore, you do not stay in.



Valid or Invalid?

Either this milk has soured, or I have the flu.

The milk has not soured.

-------------------------------------

I have the flu.

p =

q =

Premise 1: p ∨ q Premise 2: ∼ p Conclusion: q

Thus, the argument converts to: ((p ∨ q) ∧ ∼ p) → q

Do I have the flu?

Argument type:

Valid or Invalid?

If it purrs, it’s a cat.

If it’s a cat, I’m allergic to it.

----------------------------------

If it purrs, I’m allergic to it.

p =

q =

r =

Argument:

Argument type:

Valid or Invalid?

If you use binoculars, then you get a glimpse of the comet.
If you get a glimpse of the comet, then you’ll be amazed.

If you use binoculars, then you’ll be amazed.

Valid or Invalid?

If he buys another toy, his toy chest will overflow.
His toy chest overflows.

He bought another toy.

Valid or Invalid?

If Ursula plays, the opponent loses.
The opponent does not lose.

Ursula does not play.

Valid or Invalid?
If we evolved a race of Isaac Newtons, that

would be progress. (A. Huxley)
We have not evolved a race of Isaac Newtons.

That is not progress.



Valid or Invalid?

Alison pumps iron or Tom jogs.
Tom doesn’t jog.

Alison pumps iron.

Valid or Invalid?

Jeff loves to play golf. If Joan likes to sew, then Jeff
does not love to play golf. If Joan does not like to sew,
then Brad sings in the choir. Therefore, Brad sings in the choir.

Valid or Invalid?

If the Bobble head doll craze continues, then Beanie Babies will
remain popular. Barbie dolls continue to be favorites or Beanie
Babies will remain popular. Barbie dolls do not continue to be
favorites. Therefore, the Bobble head doll craze does not continue.

Valid or Invalid?

If Jerry is a DJ, then he lives in Lexington. He lives in Lexington
and is a history buff. Therefore, if Jerry is not a history buff, then
he is not a DJ.

Valid or Invalid?

If I’ve got you under my skin, then you are deep in the heart of me.
If you are deep in the heart of me, then you are not really a part of
me. You are deep in the heart of me, or you are really a part of
me. Therefore, if I’ve got you under my skin, then you are really a
part of me.

Determine a Valid Conclusion, If Possible

It is either day or night.
If it is daytime, then the squirrels are scurrying.
It is not nighttime.



Determine a Valid Conclusion, If Possible

If it is cold, you wear a coat.
If you don’t wear a coat, you are dashing.
You aren’t dashing.

1.6 Introduction to Proofs

Formal Proofs

To prove an argument is valid or the conclusion follows logically
from the hypotheses:

I Assume the hypotheses are true

I Use the rules of inference and logical equivalences to
determine that the conclusion is true.

Example

Consider the following logical argument:

If horses fly or cows eat artichokes, then the
mosquito is the national bird. If the mosquito is the
national bird, then peanut butter tastes good on hot
dogs. But peanut butter tastes terrible on hot dogs.
Therefore, cows don’t eat artichokes.

Assign propositional variables to the component propositions in the
argument:

H Horses fly
C Cows eat artichokes
M The mosquito is the national bird
P Peanut butter tastes good on hot dogs

Represent the formal argument using the variables:

1. (H ∨ C )→ M

2. M → P

3. ¬P

∴ ¬C

Use Hypotheses & Rules of Inference

The proof:

(1) (H ∨ C )→ M Hypothesis 1

(2) M → P Hypothesis 2

(3) (H ∨ C )→ P steps 1 & 2 and Hypothetical Syll

(4) ¬P Hypothesis 3

(5) ¬(H ∨ C ) steps 3 & 4, and Modus Tollens

(6) ¬H ∧ ¬C step 5 and DeMorgan

(7) ¬C ∧ ¬H step 6 and commutivity of ∧
(8) ¬C step 7 and simplification

Q.E.D.

Methods of Proof

I We wish to establish the truth of the ’theorem’: p → q

I p may be a conjunction of other hypotheses

I p → q is a conjecture until a proof is produced



Trivial Proof

If we know q is true, then p → q is trivially true, regardless of the
truth of p, since (anything → T) is always true.

Example:

If it’s raining today, then the empty set is a subset of every
set.

The assertion is trivially true (since the empty set is a subset of
every set).

Vacuous Proof

If we know one of the hypotheses in p is false, then p → q is
vacuously true, Since (F → anything) is true.

Example:

If I am both rich and poor, then hurricane Fran was a mild
breeze.

This has the form: (p ∧ ¬p)→ q

and the hypotheses form a contradiction.

Hence, q follows from the hypotheses vacuously.

Direct Proof

I Assumes the hypotheses are true

I Uses the rules of inference, axioms, and any logical
equivalences to establish the truth of the conclusion.

[Example: The Cows don’t eat artichokes proof previously.]

Another Example

Theorem: If 6x + 9y = 101, then x or y is not an integer.

Proof (direct):

I Assume 6x + 9y = 101 is true.

I Then, from the rules of algebra, 3(2x + 3y) = 101

I But, 101
3 is not an integer, so it must be the case that one of

x or y is not an integer (maybe both)

I ∴ one of x or y must not be an integer

Q.E.D.

Indirect Proof

A direct proof of the contrapositive:

I Assumes the conclusion of p → q is false (i.e., ¬q is true)

I Uses the rules of inference, axioms, and any logical
equivalences to establish the premise p is false.

Note: in order to show that a conjunction of hypotheses is false, it
suffices to show just one of the hypotheses is false.

Example

A perfect number is one which is the sum of all its divisors, except
itself. For example, 6 is perfect since 1 + 2 + 3 = 6. So is 28.

Theorem: A perfect number is not a prime.

Proof (indirect):

I We assume the number p is prime, and show it is not perfect.

I The only divisors of a prime are 1 and itself.

I Hence the sum of the divisors less than p is 1, which is not
equal to p.

I ∴ p cannot be perfect.

Q.E.D.



Proof by Contradiction or Reductio Ad Absurdum

I Assume the conclusion q is false

I Derive a contradiction, usually of the form p ∧ ¬p which
establishes ¬q → False

The contrapositive of this assertion is True → q, from which it
follows that q must be true.

Example

Theorem: There is no largest prime number.

(Note: there are no formal hypotheses here.)

Proof (by contradiction):

I Assume the conclusion, there is no largest prime number is
false.

I There is a largest prime number, call it P.

I Hence, the set of all primes lie between 1 and P.

I Form the product of these primes: R = 2× 3× 5× 7× · · ·×P

I But R + 1 is a prime larger than P. (Why?)

I This contradicts the assumption that there is a largest prime.

Q.E.D.

Formal Structure of This Proof

I Let p be the assertion that there is no largest prime.

I Let q be the assertion that P is the largest prime.

I Assume ¬p is true.

I Then (for some P), q is true, so ¬p → q is true.

I Construct a prime greater than P, so q → ¬q

I Apply hypothetical syllogism to get ¬p → ¬q

From two applications of modus ponens, we conclude that q is
true, and ¬q is true, so by conjunction, ¬q ∧ q or a contradiction
is true.

Hence, the assumption must be false, and the theorem is true.

Proof By Cases

I Break the premise of p → q into an equivalent disjunction of
the form:

p1 ∨ p2 ∨ · · · ∨ pn

I Then use the tautology:

(p1 → q)∧ (p2 → q)∧· · ·∧ (pn → q) ⇐⇒ [(p1∨p2∨· · ·∨pn)→ q]

I Each of the implications pi → q is a case.

I You must convince the reader that the cases are inclusive, i.e.,
they exhaust all possibilities.

I Establish all implications.

Example

Let ⊗ be the operation max on the set of integers:
if a ≥ b then a⊗ b = max{a, b} = a = b ⊗ a

Theorem. The operation ⊗ is associative.

For all a, b, c : (a⊗ b)⊗ c = a⊗ (b ⊗ c).
Proof.

I Let a, b, and c be unique, arbitrary integers.
I Then one of the following six cases must hold (i.e., are

exhaustive):

1. a ≥ b ≥ c

2. a ≥ c ≥ b

3. b ≥ a ≥ c

4. b ≥ c ≥ a

5. c ≥ a ≥ b

6. c ≥ b ≥ a

Case I

I a⊗ b = a, a⊗ c = a, and b ⊗ c = b.

I Hence, (a⊗ b)⊗ c = a = a⊗ (b ⊗ c).

I Therefore the equality holds for the first case.

I The proofs of the remaining cases are similar (and are left for
the student).

Q.E.D.


