Mat 2345

Week 5

Fall 2013

Student Responsibilities — Week 5

» Reading: Textbook, Section 2.4
» Assignments: See Assignment Sheet

» Attendance: Strongly Encouraged

Week 5 Overview

» 2.4 Sequences and Summations

2.4 Sequences, Summations, and
Cardinality of Infinite Sets

» Sequence: a function from a subset of the natural numbers
(usually of the form {0,1,2,...} toaset S

> The sets
{0,1,2,3,... k}
and
{1,2,3,...,k}
are called initial segments of N

> Notation: if f is a function from {0,1,2,...} to S, we
usually denote (i) by a; and we write:
{a0.a1,a2,23,...} = {ai}}y or {ai}g
where k is the upper limit (usually o)

Sequence Examples

» Using zero—origin indexing, if f(i) = 11), then the

(+
sequence

f={L3%4 ) = {0,230 ..}

» Using one—origin indexing, the sequence f becomes

f={11..) = {a,aa..}

Some Useful Sequences
n Term First 10 Terms
n? 1, 4,9, 16, 25, 36, 49, 64, 81, 100, ...
n 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ...
n* 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, ...
2" 2,4, 8,16, 32, 64, 128, 256, 512, 1024, ...
3" 3,9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, ...
n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . ..

Summation Notation

Given a sequence {a;}5 we can add together a subset of the
sequence by using the summation and function notation

ag(m) + Ag(m+1) T T Ag(n) = Ljem 2())

or more generally
ZJES aj
Examples
> O 2R = Y
»l+i+i4ie = YR
> am + aymy1) + o axm) = Zf:m aj

» If S = {2,5,7,10}, then Zjesaj = ay+as+ a7+ ayp




What are these sums?
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Product Notation

Similarly for multiplying together a subset of a sequence

n
Hj:m aj = amam41---an

Geometric Progression

Geometric Progression: a sequence of the form:

a,ar,ar?,ard,ar*,. ..

There's a proof in the textbook that
S = ’Ti;l ifr#1

You should be able to determine the sum:
»ifr =0

» if the index starts at k instead of 0

» if the index ends at something other than n (e.g., n — 1,
n—+1, etc.)

Some Useful Summation Formulae

Sum Closed Form

Sroark, (r#0) "’:ill’a, r#1
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Cardinality and Countability

The cardinality of a set A is equal to the cardinality of a set B,
denoted |A| = |B], if there exists a bijection from A to B.

A set is countable if it has the same cardinality as a subset of the
natural numbers, N

If JA|] = |NJ, the set A is said to be countably infinite.

The (transfinite) cardinal number of the set N is

aleph null = Xy

If a set is not countable, we say it is uncountable

Examples of Uncountable Sets

> The real numbers in the closed interval [0, 1]

» Z(N), the power set of N




Note: with infinite sets, proper subsets can have the same
cardinality. This cannot happen with finite sets

Countability carries with it the implication that there is a listing
or enumeration of the elements of the set

Definition: |A| < |B| if there is an injection from A to B.

Theorem. If |[A] < |Bland |B] < |A
This implies

, then |A| = |B].

» if there is an injection from Ato B and
» if there is an injection from B to A
then

> there must be a bijection from A to B

v

This is difficult to prove, but is an example of demonstrating
existence without construction.

v

It is often easier to build the injections and then conclude the
bijection exists.

» Example I.

Theorem: If A is a subset of B, then |A| < |B].

Proof: the function f(x) = x is an injection from A to B
> Example Il [{0,2,5} < o

The injection {0,2,5} — N defined by f(x) = x is:
0123 456

0 2 5

Some Countably Infinite Sets

> The set of even integers E is countably infinite. . .

Note that E is a proper subset of N
Proof: Let f(x) = 2x. Then f is a bijection from N to E

%)
ff2345---n
0 2

» 77, the set of positive integers, is countably infinite

4 6 810 - 2n -

> The set of positive rational numbers, Q*, is countably infinite

Proof: QT is countably infinite

» ZT is asubset of QT,s0 |ZT| = Ny < |QT]

> Next, we must show that |Q"| < No.

v

To do this, we show that the positive rational numbers with
repetitions, Qg, is countably infinite.

v

Then, since Q1 is a subset of Qg, it would follow that
|QT| < Ro, and hence |QT| = Vo

X
y1234567
1 2 3 4 5 6 7
1?T_TT_TT_T
5 12/ 3/ i/é 7
2

» The position on the path (listing) indicates the image of the
bijection function f from N to Qg:

fO)=1 f)=3% f2=2 fB)=3 et

» Every rational number appears on the list at least once, some
many times (repetitions).

» Hence,

Nl = |Qr| = Xo

The set of all rational numbers, Q, positive and negative, is also
countably infinite.




More Examples of Countably Infinite

The set S of (finite length) strings over a finite alphabet A is
countably infinite.

To show this, we assume that:
> A is non—empty

> There is an “alphabetical” ordering of the symbols in A

Proof: List the strings in lexicographic order —
» all the strings of zero length
» then all the strings of length 1 in alphabetical order,
» then all the strings of length 2 in alphabetical order,

> etc.

This implies a bijection from N to the list of strings and hence it is
a countably infinite set

String Example

Let the alphabet A = {a, b, c}

Then the lexicographic ordering of the strings formed from A is:

{\,a, b, c,aa,ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, ... }

= {f(0)> f(l)v f(2)7 f(?’)a f(4)> e }

The Set of All C++ Programs is countable

Proof: Let S be the set of legitimate characters which can appear
in a C++ program.

> A C++ compiler will determine if an input program is a
syntactically correct C++ program (the program doesn't have
to do anything useful).

» Use the lexicographic ordering of S and feed the strings into the
compiler.

» If the compiler says YEs, this is a syntactically correct C++
program, we add the program to the list.

» Else, we move on to the next string
In this way we construct a list or an implied bijection from N to

the set of C++ programs.

Hence, the set of C++ programs is countable.

The Set of All Java Programs is countable

Proof: Let S be the set of legitimate characters which can appear
in a Java program.

» A Java compiler will determine if an input program is a
syntactically correct Java program (the program doesn't have
to do anything useful).

» Use the lexicographic ordering of S and feed the strings into the
compiler.

> If the compiler says YES, this is a syntactically correct Java
program, we add the program to the list.

» Else, we move on to the next string

In this way we construct a list or an implied bijection from N to
the set of Java programs.

Hence, the set of Java programs is countable.

Cantor Diagonalization

Cantor Diagonalization is an important technique used to
construct an object which is not a member of a countable set of
objects with (possibly) infinite descriptions

Theorem: The set of real numbers between 0 and 1 is
uncountable.

Proof: We assume that it is countable and derive a
contradiction.

Proof

v

If the set is countable, we can list all the real numbers (i.e., there
is a bijection from a subset of N to the set).

» We show that no matter what list you produce we can construct a
real number between 0 and 1 which is not in the list.

» Hence, the number we constructed cannot exist in the list and
therefore the set is not countable.

» It's actually much bigger than countable — it's said to have the
cardinality of the continuum, ¢




Represent each real number in (0,1) using its decimal expansion

Eg. 0.3333333......
0.5000000.......

0.4999999......

NI W=

(It doesn’t matter if there is more than one expansion for a number
as long as our construction takes this into account.)

The resulting list:

rn = 0.didipdizdigdisdis. .. ...
rp = 0.dxidxdxzdadosdrg ... ...
r3 = 0.d51d32d330340d35d36 - - - - . -

Now, construct the number x = 0.X1X0X3X3X5X6X7 - - - - . . so
that:

Xi = 3 if d,‘,' 7£ 3

Xi = 4If d,‘,' = 3

Note: choosing 0 and 9 is not a good idea because of the non—uniqueness of
decimal expansions.

Then, owing to the way it was constructed, x is not equal to any
number in the list.

Hence, no such list can exist, and thus the interval (0,1) is
uncountable.

Computability

A number x between 0 and 1 is computable if there is a C++ (or
Java, etc.) program which, when given the input /, will produce
the ith digit in the decimal expansion of x.

Example: The number % is computable.

The C++ program which always outputs the digit 3, regardless of
the input, computes the number

Some Things are Not Computable

Theorem. There exists a number x between 0 and 1 which is not
computable.

There does not exist a C++ program (or a program in any other
computer language) which will compute it!

Why? Because there are more numbers between 0 and 1 than
there are C++ programs to compute them.

(In fact, there are ¢ such numbers!)

Yet another example of the non—existence of programs to compute
things!




