Mat 2345

Week 5

Fall 2013

Student Responsibilities — Week 5

► Reading: Textbook, Section 2.4

► Assignments: See Assignment Sheet

► Attendance: Strongly Encouraged

Week 5 Overview

▶ 2.4 Sequences and Summations

2.4 Sequences, Summations, and Cardinality of Infinite Sets

▶ Sequence: a function from a subset of the natural numbers (usually of the form $\{0,1,2,\dots\}$ to a set S

▶ The sets

 $\{0, 1, 2, 3, \dots, k\}$

and

 $\{1,2,3,\dots,k\}$ are called **initial segments** of $\mathbb N$

Notation: if f is a function from $\{0, 1, 2, ...\}$ to S, we usually denote f(i) by a_i and we write:

$$\{a_0,a_1,a_2,a_3,\dots\} = \{a_i\}_{i=0}^k \ \ \text{or} \ \ \{a_i\}_0^k$$
 where k is the upper limit (usually ∞)

Sequence Examples

▶ Using **zero-origin** indexing, if $f(i) = \frac{1}{(i+1)}$, then the

$$f = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\} = \{a_0, a_1, a_2, a_3, \dots\}$$

▶ Using **one**—**origin** indexing, the sequence *f* becomes

$$f = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\} = \{a_1, a_2, a_3, \dots\}$$

Some Useful Sequences					
n th Term	Term First 10 Terms				
n ²	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,				
n ³	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,				
n ⁴	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,				
2 ⁿ	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,				
3 ⁿ	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,				
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,				

Summation Notation

Given a sequence $\{a_i\}_0^k$ we can add together a subset of the sequence by using the summation and function notation

$$a_{g(m)} + a_{g(m+1)} + \cdots + a_{g(n)} = \sum_{j=m}^{n} a_{g(j)}$$

or more generally

$$\sum_{j \in S} a_j$$

Examples

$$r^{0} + r^{1} + r^{2} + r^{3} + \dots + r^{n} = \sum_{i=0}^{n} r^{i}$$

$$ightharpoonup 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{i=1}^{\infty} \frac{1}{i}$$

$$a_{2m} + a_{2(m+1)} + \cdots + a_{2(n)} = \sum_{j=m}^{n} a_{2j}$$

▶ If
$$S = \{2, 5, 7, 10\}$$
, then $\sum_{j \in S} a_j = a_2 + a_5 + a_7 + a_{10}$

What are these sums?

$$\sum_{i=0}^{1} i^2 =$$

$$\sum_{i=0}^{3} i^2 =$$

$$\sum_{j=-1}^{1} 2^{j} =$$

$$\sum_{k=3}^{5} (-1)^k =$$

Product Notation

Similarly for multiplying together a subset of a sequence

$$\prod_{j=m}^n a_j = a_m a_{m+1} \dots a_n$$

Geometric Progression

Geometric Progression: a sequence of the form:

$$a, ar, ar^2, ar^3, ar^4, \dots$$

There's a proof in the textbook that

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1}-1}{r-1}$$
 if $r \neq 1$

You should be able to determine the sum:

- ightharpoonup if r = 0
- ightharpoonup if the index starts at k instead of 0
- if the index ends at something other than n (e.g., n-1, n+1, etc.)

Some Useful Summation Formulae			
Sum	Closed Form		
$\sum_{k=0}^{n} ar^k, (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$		
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$		
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$		
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$		
$\sum_{k=0}^{\infty} x^k, (x < 1)$	$\frac{1}{1-x}$		
$\sum_{k=1}^{\infty} k x^{k-1}, \ (x < 1)$	$\frac{1}{(1-x)^2}$		

Cardinality and Countability

The cardinality of a set A is **equal** to the cardinality of a set B, denoted |A| = |B|, if there exists a **bijection** from A to B.

A set is countable if it has the same cardinality as a subset of the natural numbers, $\ensuremath{\mathbb{N}}$

If $|A| = |\mathbb{N}|$, the set A is said to be **countably infinite**.

The (transfinite) cardinal number of the set $\ensuremath{\mathbb{N}}$ is

aleph null
$$= \aleph_0$$

If a set is not countable, we say it is **uncountable**

Examples of Uncountable Sets

- lacktriangle The real numbers in the closed interval [0,1]
- $ightharpoonup \mathscr{P}(\mathbb{N})$, the power set of \mathbb{N}

Note: with infinite sets, **proper** subsets can have the same cardinality. This **cannot** happen with finite sets

Countability carries with it the implication that there is a listing or enumeration of the elements of the set

Definition: $|A| \leq |B|$ if there is an injection from A to B.

Theorem. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|. This implies

- ▶ if there is an injection from A to B and
- ▶ if there is an injection from *B* to *A*

then

▶ there must be a bijection from A to B

- ► This is **difficult** to prove, but is an example of demonstrating existence without construction.
- It is often easier to build the injections and then conclude the bijection exists.
- ► Example I.

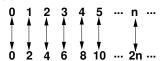
Theorem: If A is a subset of B, then $|A| \le |B|$. Proof: the function f(x) = x is an injection from A to B

► Example II. $|\{0,2,5\}| \le \aleph_0$ The injection $f\{0,2,5\} \to \mathbb{N}$ defined by f(x) = x is:

Some Countably Infinite Sets

▶ The set of even integers $\mathbb E$ is countably infinite... Note that $\mathbb E$ is a proper subset of $\mathbb N$

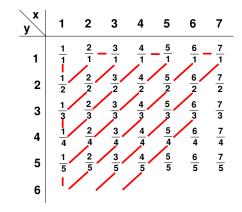
Proof: Let f(x) = 2x. Then f is a bijection from \mathbb{N} to \mathbb{E}



- $ightharpoonup \mathbb{Z}^+$, the set of positive integers, is countably infinite
- ▶ The set of positive rational numbers, \mathbb{Q}^+ , is countably infinite

Proof: \mathbb{Q}^+ is countably infinite

- $ightharpoonup \mathbb{Z}^+$ is a subset of \mathbb{Q}^+ , so $|\mathbb{Z}^+| = \aleph_0 \le |\mathbb{Q}^+|$
- ▶ Next, we must show that $|\mathbb{Q}^+| \leq \aleph_0$.
- \blacktriangleright To do this, we show that the positive rational numbers with repetitions, $\mathbb{Q}_{\mathbb{R}},$ is countably infinite.
- ▶ Then, since \mathbb{Q}^+ is a subset of $\mathbb{Q}_{\mathbb{R}}$, it would follow that $|\mathbb{Q}^+| \leq \aleph_0$, and hence $|\mathbb{Q}^+| = \aleph_0$



▶ The position on the path (listing) indicates the image of the bijection function f from $\mathbb N$ to $\mathbb Q_\mathbb R$:

$$f(0) = \frac{1}{1}$$
, $f(1) = \frac{1}{2}$, $f(2) = \frac{2}{1}$, $f(3) = \frac{3}{1}$, etc.

- Every rational number appears on the list at least once, some many times (repetitions).
- ▶ Hence, $|\mathbb{N}| = |\mathbb{Q}_{\mathbb{R}}| = \aleph_0$

The set of all rational numbers, $\mathbb{Q},$ positive and negative, is also countably infinite.

More Examples of Countably Infinite

The set S of (finite length) strings over a finite alphabet A is countably infinite.

To show this, we assume that:

- ► A is non-empty
- ▶ There is an "alphabetical" ordering of the symbols in A

Proof: List the strings in lexicographic order —

- ▶ all the strings of zero length
- ▶ then all the strings of length 1 in alphabetical order,
- ▶ then all the strings of length 2 in alphabetical order,
- etc.

This implies a bijection from $\ensuremath{\mathbb{N}}$ to the list of strings and hence it is a countably infinite set

String Example

Let the alphabet $A = \{a, b, c\}$

Then the lexicographic ordering of the strings formed from A is:

 $\{\lambda, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, \ldots\}$

 $= \{f(0), f(1), f(2), f(3), f(4), \dots\}$

The Set of All C++ Programs is **countable**

Proof: Let S be the set of legitimate characters which can appear in a C++ program.

- ► A C++ compiler will determine if an input program is a syntactically correct C++ program (the program doesn't have to do anything useful).
- Use the lexicographic ordering of S and feed the strings into the compiler.
- ▶ If the compiler says YES, this is a syntactically correct C++ program, we add the program to the list.
- ▶ Else, we move on to the next string

In this way we construct a list or an implied bijection from $\mathbb N$ to the set of C++ programs.

Hence, the set of C++ programs is countable.

The Set of All Java Programs is countable

Proof: Let S be the set of legitimate characters which can appear in a Java program.

- ► A Java compiler will determine if an input program is a syntactically correct Java program (the program doesn't have to do anything useful).
- ► Use the lexicographic ordering of *S* and feed the strings into the compiler.
- ▶ If the compiler says YES, this is a syntactically correct Java program, we add the program to the list.
- ▶ Else, we move on to the next string

In this way we construct a list or an implied bijection from $\ensuremath{\mathbb{N}}$ to the set of Java programs.

Hence, the set of Java programs is countable.

Cantor Diagonalization

Cantor Diagonalization is an important technique used to construct an object which is **not** a member of a countable set of objects with (possibly) infinite descriptions

Theorem: The set of real numbers between 0 and 1 is uncountable

Proof: We assume that it is countable and derive a contradiction.

Proof

- ▶ If the set is countable, we can list all the real numbers (i.e., there is a bijection from a subset of $\mathbb N$ to the set).
- We show that no matter what list you produce we can construct a real number between 0 and 1 which is not in the list.
- Hence, the number we constructed cannot exist in the list and therefore the set is not countable.
- ▶ It's actually much bigger than countable it's said to have the cardinality of the continuum, c

Represent each real number in (0,1) using its decimal expansion

E.g.	$\frac{1}{3}$	=	0.3333333
	$\frac{1}{2}$	=	0.5000000
		=	0.4999999

(It doesn't matter if there is more than one expansion for a number as long as our construction takes this into account.)

The resulting list:

$$\begin{array}{rcl}
r_1 & = & 0.d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}..... \\
r_2 & = & 0.d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}..... \\
r_3 & = & 0.d_{31}d_{32}d_{33}d_{34}d_{35}d_{36}..... \\
\vdots$$

Now, construct the number $x=0.x_1x_2x_3x_4x_5x_6x_7\ldots$ so that:

$$x_i = 3 \text{ if } d_{ii} \neq 3$$

 $x_i = 4 \text{ if } d_{ii} = 3$

 ${f Note}:$ choosing 0 and 9 is not a good idea because of the non–uniqueness of decimal expansions.

Then, owing to the way it was constructed, \boldsymbol{x} is **not equal** to any number in the list.

Hence, no such list can exist, and thus the interval (0,1) is uncountable.

Computability

A number x between 0 and 1 is **computable** if there is a C++ (or Java, etc.) program which, when given the input i, will produce the ith digit in the decimal expansion of x.

Example: The number $\frac{1}{3}$ is computable.

The C++ program which always outputs the digit 3, regardless of the input, computes the number

Some Things are Not Computable

Theorem. There exists a number x between 0 and 1 which is **not** computable.

There does not exist a C++ program (or a program in any other computer language) which will compute it!

Why? Because there are more numbers between 0 and 1 than there are C++ programs to compute them.

(In fact, there are $\mathfrak c$ such numbers!)

Yet another example of the non–existence of programs to compute things!