
Mat 2345

Week 5

Fall 2013

Student Responsibilities — Week 5

I Reading: Textbook, Section 2.4

I Assignments: See Assignment Sheet

I Attendance: Strongly Encouraged

Week 5 Overview

I 2.4 Sequences and Summations

2.4 Sequences, Summations, and
Cardinality of Infinite Sets

I Sequence: a function from a subset of the natural numbers
(usually of the form {0, 1, 2, . . . } to a set S

I The sets
{0, 1, 2, 3, . . . , k}

and
{1, 2, 3, . . . , k}

are called initial segments of N

I Notation: if f is a function from {0, 1, 2, . . . } to S , we
usually denote f (i) by ai and we write:

{a0, a1, a2, a3, . . . } = {ai}ki=0 or {ai}k0
where k is the upper limit (usually ∞)

Sequence Examples

I Using zero–origin indexing, if f (i) = 1
(i+1) , then the

sequence

f = {1, 12 , 13 , 14 , . . . } = {a0, a1, a2, a3, . . . }

I Using one–origin indexing, the sequence f becomes

f = {12 , 13 , 14 , . . . } = {a1, a2, a3, . . . }

Some Useful Sequences

nth Term First 10 Terms

n2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

n3 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, . . .

n4 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .

2n 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

3n 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .

n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . . .

Summation Notation

Given a sequence {ai}k0 we can add together a subset of the
sequence by using the summation and function notation

ag(m) + ag(m+1) + · · ·+ ag(n) =
∑n

j=m ag(j)

or more generally
∑

j∈S aj

Examples

I r0 + r1 + r2 + r3 + · · ·+ rn =
∑n

j=0 r
j

I 1 + 1
2 + 1

3 + 1
4 + . . . =

∑∞
i=1

1
i

I a2m + a2(m+1) + · · ·+ a2(n) =
∑n

j=m a2j

I If S = {2, 5, 7, 10}, then
∑

j∈S aj = a2 + a5 + a7 + a10



What are these sums?

I
∑1

i=0 i
2 =

I
∑3

i=0 i
2 =

I
∑1

j=−1 2j =

I
∑5

k=3 (−1)k =

Product Notation

Similarly for multiplying together a subset of a sequence

∏n
j=m aj = amam+1 . . . an

Geometric Progression

Geometric Progression: a sequence of the form:

a, ar , ar2, ar3, ar4, . . .

There’s a proof in the textbook that
∑n

i=0 r
i = rn+1−1

r−1 if r 6= 1

You should be able to determine the sum:

I if r = 0

I if the index starts at k instead of 0

I if the index ends at something other than n (e.g., n − 1,
n + 1, etc.)

Some Useful Summation Formulae

Sum Closed Form

∑n
k=0 ar

k , (r 6= 0) arn+1−a
r−1 , r 6= 1

∑n
k=1 k

n(n+1)
2

∑n
k=1 k

2 n(n+1)(2n+1)
6

∑n
k=1 k

3 n2(n+1)2

4

∑∞
k=0 x

k , (|x | < 1) 1
1−x

∑∞
k=1 kx

k−1, (|x | < 1) 1
(1−x)2

Cardinality and Countability

The cardinality of a set A is equal to the cardinality of a set B,
denoted |A| = |B|, if there exists a bijection from A to B.

A set is countable if it has the same cardinality as a subset of the
natural numbers, N

If |A| = |N|, the set A is said to be countably infinite.

The (transfinite) cardinal number of the set N is

aleph null = ℵ0

If a set is not countable, we say it is uncountable

Examples of Uncountable Sets

I The real numbers in the closed interval [0, 1]

I P(N), the power set of N



Note: with infinite sets, proper subsets can have the same
cardinality. This cannot happen with finite sets

Countability carries with it the implication that there is a listing
or enumeration of the elements of the set

Definition: |A| ≤ |B| if there is an injection from A to B.

Theorem. If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.
This implies

I if there is an injection from A to B and

I if there is an injection from B to A

then

I there must be a bijection from A to B

I This is difficult to prove, but is an example of demonstrating
existence without construction.

I It is often easier to build the injections and then conclude the
bijection exists.

I Example I.
Theorem: If A is a subset of B, then |A| ≤ |B|.
Proof: the function f (x) = x is an injection from A to B

I Example II. |{0, 2, 5}| ≤ ℵ0
The injection f {0, 2, 5} → N defined by f (x) = x is:

0 1 2 3 4 5 6 ...

2 50

Some Countably Infinite Sets

I The set of even integers E is countably infinite. . .
Note that E is a proper subset of N

Proof: Let f (x) = 2x . Then f is a bijection from N to E

0 2 8 104 6

0 1 2 3 4 5

...

n

2n ...

... ...

I Z+, the set of positive integers, is countably infinite

I The set of positive rational numbers, Q+, is countably infinite

Proof: Q+ is countably infinite

I Z+ is a subset of Q+, so |Z+| = ℵ0 ≤ |Q+|

I Next, we must show that |Q+| ≤ ℵ0.

I To do this, we show that the positive rational numbers with
repetitions, QR, is countably infinite.

I Then, since Q+ is a subset of QR, it would follow that
|Q+| ≤ ℵ0, and hence |Q+| = ℵ0
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I The position on the path (listing) indicates the image of the
bijection function f from N to QR:

f (0) = 1
1 , f (1) = 1

2 , f (2) = 2
1 , f (3) = 3

1 , etc.

I Every rational number appears on the list at least once, some
many times (repetitions).

I Hence, |N| = |QR| = ℵ0

The set of all rational numbers, Q, positive and negative, is also
countably infinite.



More Examples of Countably Infinite

The set S of (finite length) strings over a finite alphabet A is
countably infinite.

To show this, we assume that:

I A is non–empty

I There is an “alphabetical” ordering of the symbols in A

Proof: List the strings in lexicographic order —

I all the strings of zero length

I then all the strings of length 1 in alphabetical order,

I then all the strings of length 2 in alphabetical order,

I etc.

This implies a bijection from N to the list of strings and hence it is
a countably infinite set

String Example

Let the alphabet A = {a, b, c}

Then the lexicographic ordering of the strings formed from A is:

{λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc , aaa, aab, aac, aba, . . . }

= {f (0), f (1), f (2), f (3), f (4), . . . }

The Set of All C++ Programs is countable

Proof: Let S be the set of legitimate characters which can appear
in a C++ program.

I A C++ compiler will determine if an input program is a
syntactically correct C++ program (the program doesn’t have
to do anything useful).

I Use the lexicographic ordering of S and feed the strings into the
compiler.

I If the compiler says yes, this is a syntactically correct C++
program, we add the program to the list.

I Else, we move on to the next string

In this way we construct a list or an implied bijection from N to
the set of C++ programs.

Hence, the set of C++ programs is countable.

The Set of All Java Programs is countable

Proof: Let S be the set of legitimate characters which can appear
in a Java program.

I A Java compiler will determine if an input program is a
syntactically correct Java program (the program doesn’t have
to do anything useful).

I Use the lexicographic ordering of S and feed the strings into the
compiler.

I If the compiler says yes, this is a syntactically correct Java
program, we add the program to the list.

I Else, we move on to the next string

In this way we construct a list or an implied bijection from N to
the set of Java programs.

Hence, the set of Java programs is countable.

Cantor Diagonalization

Cantor Diagonalization is an important technique used to
construct an object which is not a member of a countable set of
objects with (possibly) infinite descriptions

Theorem: The set of real numbers between 0 and 1 is
uncountable.

Proof: We assume that it is countable and derive a
contradiction.

Proof

I If the set is countable, we can list all the real numbers (i.e., there
is a bijection from a subset of N to the set).

I We show that no matter what list you produce we can construct a
real number between 0 and 1 which is not in the list.

I Hence, the number we constructed cannot exist in the list and
therefore the set is not countable.

I It’s actually much bigger than countable — it’s said to have the
cardinality of the continuum, c



Represent each real number in (0, 1) using its decimal expansion

E.g. 1
3 = 0.3333333 . . . . . .
1
2 = 0.5000000 . . . . . .

= 0.4999999 . . . . . .

(It doesn’t matter if there is more than one expansion for a number

as long as our construction takes this into account.)

The resulting list:

r1 = 0.d11d12d13d14d15d16 . . . . . .

r2 = 0.d21d22d23d24d25d26 . . . . . .

r3 = 0.d31d32d33d34d35d36 . . . . . .
...

Now, construct the number x = 0.x1x2x3x4x5x6x7 . . . . . . so
that:

xi = 3 if dii 6= 3

xi = 4 if dii = 3

Note: choosing 0 and 9 is not a good idea because of the non–uniqueness of

decimal expansions.

Then, owing to the way it was constructed, x is not equal to any
number in the list.

Hence, no such list can exist, and thus the interval (0, 1) is
uncountable.

Computability

A number x between 0 and 1 is computable if there is a C++ (or
Java, etc.) program which, when given the input i , will produce
the i th digit in the decimal expansion of x .

Example: The number 1
3 is computable.

The C++ program which always outputs the digit 3, regardless of
the input, computes the number

Some Things are Not Computable

Theorem. There exists a number x between 0 and 1 which is not
computable.

There does not exist a C++ program (or a program in any other
computer language) which will compute it!

Why? Because there are more numbers between 0 and 1 than
there are C++ programs to compute them.

(In fact, there are c such numbers!)

Yet another example of the non–existence of programs to compute
things!


