Mat 2345

Week 6

Fall 2013

Student Responsibilities — Week 6

- ▶ Reading: Textbook, Section 3.1–3.2
- ► Assignments:
 - 1. for sections 3.1 and 3.2
 - 2. Worksheet #4 on Execution Times
 - 3. Worksheet #5 on Growth Rates
- ► Attendance: Strongly Encouraged

Week 8 Overview

- ▶ 3.1 Algorithms
- ▶ 3.2 Growth of Functions

3.1 Algorithms

- Algorithm: a finite set of unambiguous instructions for performing a computation or for solving a problem.
- Examples:
 - ▶ Shampoo Instructions: Lather, Rinse, Repeat
 - Recipe for making Italian Beef:
 - ▶ Place beef roast
 - ▶ 1 pkg Au Jus dry gravy mix
 - ▶ 1 pkg dry Italian dressing mix and
 - ▶ 1 C water in slow cooker
 - cook all day or over night
 - shred beef and serve with French Bread or rolls
 - $\,\blacktriangleright\,$ The instructions that come with a sewing pattern
 - ▶ The instructions for a model airplane or rocket kit
 - ► Insert disk and press any key to continue

Properties of Algorithms

- ▶ Input an algorithm usually has input from a specified set
- ▶ Output the solution to the problem, also from a specified set
- ▶ Definiteness steps of an algorithm must be defined precisely
- Correctness an algorithm must produce the correct values for each of the input values

Properties of Algorithms — Continued

- ► Finiteness an algorithm must produce the desired output after a finite (but perhaps large) number of steps for any input in the set
- ► Effectiveness it must be possible to perform each step of an algorithm exactly and in a finite amount of time
- ► Generality an algorithm should be applicable for all problems of the desired form, not just for a particular set of input values

Finding the Maximum Value in a Finite Sequence — Pseudocode

```
integer max(a1, a2, ..., an : integers)
currmax := a1
for i := 2 to n
    if currmax < ai then currmax := ai
{currmax is the largest element}
return currmax;</pre>
```

C++ Implementation of Max

```
template <class T>
T Max (const vector<T> & L){

// PRE: L not empty, type T is comparable

// POST: returns the largest value in vector L

T mymax = L[0];

for (int i = 1; i < L.size; i++)
    if (mymax < L[i])
        mymax = L[i];

return mymax;
}</pre>
```

Search Algorithms

- ► The problem: locate a particular element (target) in a list
- ▶ Distinguish between unordered and ordered (sorted) lists
- ► Two primary algorithms:
 - ► Linear or Sequential Search look at each item in the list, first to last, comparing them to target until target is found or we reach end of list
 - Binary Search (only used on ordered lists) compare target to middle element; discard low or high half of list and repeat on remaining half of list until found or list is empty

The Linear Search Algorithm

```
integer LinearSearch
    ( x: integer,
        a1, a2, ..., an: distinct integers)
i := 1
while (i <= n and x != ai)
        i := i + 1
if i <= n
        then return i
        else return 0
{ the value returned is the subscript of term that
        equals x, or is 0 if x is not found }</pre>
```

Note: it doesn't matter if the list is ordered or not, this algorithm will still work

The Binary Search Algorithm

```
integer BinarySearch( x: integer,
              a1, a2, ..., an: increasing integers)
           {left endpoint of search interval}
i := 1
j := n
           {right endpoint of search interval}
while i < j
begin
     m := floor[(i + j) / 2]
     if x > am
       then i := m + 1
       else j := m
end
if x = ai
     then return i
     else return 0
```

Notes: the value returned is the subscript of term that equals x, or is 0 if x is not found; can only be used on sorted list

Bubble Sort Algorithm

Other Sorts:

Selection Sort Insertion Sort Merge Sort Quick Sort Bucket Sort Radix Sort

3.2 Growth of Functions

- ► Time Complexity is a measure of the computational "steps" of an algorithm relative to the size of input
- Algorithms are analyzed to see how the number of computational steps grows in relation to the size of input, n
- ► Once we have a function to compute the **time complexity** of algorithms which solve the same problem, we can compare them to determine which is more efficient
- $\,\blacktriangleright\,$ For example, if the time it takes one sorting algorithm to sort n values is

$$T_1(n) = \frac{3}{2}n^2 + 3n$$

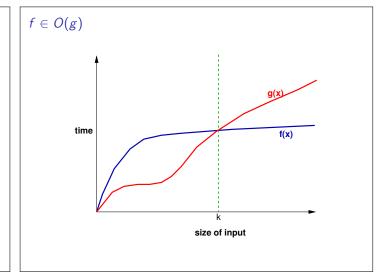
and another takes time

$$T_2(n) = 5n\log n + 29$$

which algorithm should we implement?

Comparing Function Growth

- Quantify the concept: g grows at least as fast as f
- What really matters when comparing the complexity of algorithms?
 - We mostly care about the behavior for large problems (i.e., what happens for "sufficiently large" input sizes)
 - Even bad algorithms can be used to solve "sufficiently small" problems
 - We can ignore some implementation details such as loop counter incrementation — we can straight-line any loop, etc.
- Remember, the functions we're discussing represent the time complexities of algorithms.



Big-Oh Notation

▶ g asymptotically dominates f:

Let f and g be functions from \mathbb{N} to \mathbb{R} .

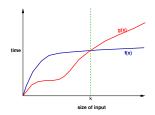
Then $f \in O(g)$ — f is Big–Oh of g or f is order g — IFF $\exists k \ \exists C \ \forall n[n>k \to |f(n)| \le C|g(n)|, \ k,C>0]$

▶ In English: for **sufficiently** large *n*, if the function *f* is bounded from above by a positive, constant multiple of the function *g*, then we say *f* is "Big–Oh" of *g*.

If
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
 then $f \in o(g)$

(f is Little-Oh of g, or f is strictly bounded by g)

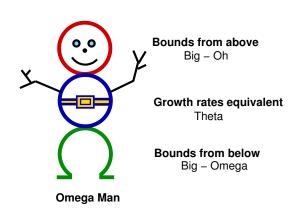
Proving Asymptotic Domination



To prove $f \in O(g)$, given f and g:

- ▶ Determine / choose some positive *k*
- ► Determine / choose a positive *C* (which may depend upon choice of *k*)
- ▶ Once *k* and *C* are chosen, the implication must be proven true

Three Important Complexity Classes



Complexity Classes

- ► The sets O(g), o(g), $\Omega(g)$, $\omega(g)$, and $\Theta(g)$ are called complexity classes.
- O(g) is a set which contains all the functions which g dominates.

$$f$$
 is $O(g)$ means $f \in O(g)$

- We say $f \in \Omega(g)$ if there are positive constants k and C such that $f(n) \geq Cg(n)$ whenever n > k
- ▶ If $f \in O(g)$ and $f \in \Omega(g)$, then $f \in \Theta(g)$
- We use "little-oh" and "little-omega" when we have strict inequality

Example

Let f(n) = 4n + 5 and $g(n) = n^2$.

We wish to show that $f \in O(g)$

We need to find constants k and C, then show the implication

$$\forall n > k, f(n) \leq Cg(n)$$

is true for the values we chose.

To find k, we can set the functions equal, and solve for n:

$$4n+5 = n2
0 = n2 - 4n - 5
0 = (n-5)(n+1)$$

So, n=5 or n=-1, but n is the size of input and therefore cannot be negative. Thus, k must be at least 5.

If we choose k=6, then $\it C$ can be any positive number greater than or equal to 1.

All that is left is the proof that $\forall n > k$, $f(n) \leq Cg(n)$, which we shall revisit when we discuss induction proofs.

Big-Oh Properties

- f is O(g) IFF $O(f) \subseteq O(g)$
- ▶ If $f \in O(g)$ and $g \in O(f)$, then O(f) = O(g)
- ► The set O(g) is closed under addition: If $f \in O(g)$ and $h \in O(g)$, then $f + h \in O(g)$

▶ O(g) is closed under multiplication by a scalar $a \in \mathbb{R}$:

If
$$f \in O(g)$$
 then $af \in O(g)$
I.e., $O(g)$ is a vector space

► Also, as you would expect,

If
$$f \in O(g)$$
 and $g \in O(h)$, then $f \in O(h)$

In particular,

$$O(f) \subseteq O(g) \subseteq O(h)$$

Theorem

If $f_1 \in \mathit{O}(g_1)$ and $f_2 \in \mathit{O}(g_2)$, then:

1.
$$f_1 f_2 \in O(g_1 g_2)$$

2.
$$f_1 + f_2 \in O(max\{g_1, g_2\})$$

Functional Values for Small n

log ₂ n	\sqrt{n}	n	n ²	2 ⁿ	n!	n ⁿ
0	1.0000	1	1	2	1	1
1.0000	1.4142	2	4	4	2	4
1.5850	1.7321	3	9	8	6	27
2.0000	2.0000	4	16	16	24	256
2.3219	2.2361	5	25	32	120	3125
2.5850	2.4495	6	36	64	720	46,656
2.8074	2.6458	7	49	128	5040	823,543
3.0000	2.8284	8	64	256	40,320	1.67×10^7
3.1699	3.0000	9	81	512	362,880	3.87×10^8
3.3219	3.1623	10	100	1024	3.6×10^6	10 ¹⁰

Approximate Functional Values for Powers of n

log ₂ n	\sqrt{n}	n	n ²	2 ⁿ	n!	n ⁿ
3.32	3.16	10 ¹	10 ² 1024		3.63(10 ⁶)	10 ¹⁰
6.64	10	10 ²	10 ⁴	1.27(10 ³⁰)	9.3(10 ¹⁵⁷)	10 ²⁰⁰
9.97	31.62	10 ³	10 ⁶	1.07(10 ³⁰¹)	4(10 ²⁵⁶⁷)	10 ³⁰⁰⁰
13.29	100	10 ⁴	10 ⁸	2(10 ³⁰¹⁰)	2.9(10 ^{35,659})	10 ^{40,000}
16.61	316.2	10 ⁵	10 ¹⁰	10 ^{30,103}	2.9(10 ^{456,573})	10 ^{500,000}
19.93	1000	10 ⁶	10 ¹²	10301,030	8.3(10 ^{5,565,708})	10 ^{60,000,000}
39.86	10 ⁶	10 ¹²	10 ²⁴	BIG	LARGE	HUGE

Important Complexity Classes

Theorem. The hierarchy of several familiar sequences in the sense that each sequence is Big–Oh of any sequence to its right:

1,
$$\log_2 n$$
, ..., $\sqrt[4]{n}$, $\sqrt[3]{n}$, \sqrt{n} , n , $n \log_2 n$, $n \sqrt{n}$, n^2 , n^3 , n^4 , ..., 2^n , $n!$, n^n

Similarly, stated in set notation:

$$O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O(n^2) \subseteq O(n^j) \subseteq O(c^n) \subseteq O(n!)$$
 where $j > 2$ and $c > 1$

Time Equivalences

 SECOND
 1
 100

 MILLISECONDS
 1,000
 103

 MICROSECONDS
 1,000,000
 106

 NANOSECONDS
 1,000,000,000
 109

Largest Problem Sizes

Let f(n) be the time complexity of an algorithm in MICROSECONDS.

The largest problem of size n that can be solved in:

1 SECOND IS $f(n)/10^6$ 1 MINUTE IS $f(n)/(60*10^6)$ 1 HOUR IS $f(n)/(60*60*10^6)$ 1 DAY IS $f(n)/(24*60*60*10^6)$ 1 MONTH IS $f(n)/(30*24*60*60*10^6)$ 1 YEAR IS $f(n)/(12*30*24*60*60*10^6)$ 1 CENTURY IS $f(n)/(100*12*30*24*60*60*10^6)$

Largest Problems "Do-able" in 1 Second

1. Let f(n) = n. Then the largest problem for which we can compute an answer in one second is:

$$n/10^6 = 1$$

 $n = 10^6$

2. Let $f(n) = n^2$. Then the largest problem for which we can compute an answer in one second is:

$$n^2/10^6 = 1$$

$$n = \sqrt{10^6} = 10^3$$

3. Let $f(n) = 2^n$. Then the largest problem for which we can compute an answer in one second is:

$$2^{n}/10^{6} = 1$$

$$2^{n} = 10^{6} \approx 2^{19}$$

$$n \approx 19$$

Let f(n) = n!. Then the largest problem for which we can compute an answer in one second is:

$$n!/10^6 = 1$$

$$n! = 10^6$$

Here, it helps to use a calculator..., and we find

$$9! = 362,880 - too small$$

$$10! = 3.628.880 - too large$$

$$n \approx 9$$

(Recall that *n* is input size)

Review — Exponents

$$x^{a}x^{b} = x^{a+b}$$
 $2^{5}2^{7} = 2^{12}$
 $\frac{x^{a}}{x^{b}} = x^{a-b}$ $\frac{3^{8}}{3^{2}} = 3^{6}$
 $(x^{a})^{b} = x^{ab}$ $(5^{2})^{3} = 5^{6}$

Notes

$$x^{n} + x^{n} = 2x^{n} \dots$$
 not x^{2n} $3^{2} + 3^{2} = 2(3^{2})$
 $5^{3} + 5^{3} = 2^{7} + 2^{7} = 2^{100} + 2^{100} = 2^{4} + 5^{4} = 2^{6} + 3^{6} = 2^{$

Review — Logarithms

Logarithm:
$$x^a = b \text{ IFF } \log_x b = a$$

 $2^3 = 8 \text{ IFF } \log_2 8 = 3$
 $5^4 = 625 \text{ IFF } \log \underline{\hspace{1cm}}$
 $\underline{\hspace{1cm}} = \underline{\hspace{1cm}} \text{ IFF } \log_3 81 = 4$

Theorem.
$$\log ab = \log a + \log b$$

 $\log 32 = \log(2^5) = 5$
 $= \log(8 * 4)$
 $= \log 8 + \log 4$
 $= \log 2^3 + \log 2^2$
 $= 3 + 2 = 5$

Other Formulae You Should Know

- - ▶ $\log \frac{32}{4} = \log \frac{2^5}{2^2} = \log 2^{5-2} = \log 2^3 = 3$ and —

 - ▶ Determine $\log \frac{1024}{64}$ both ways shown above
- $ightharpoonup \log a^b = b \log a$
 - $ightharpoonup \log 16^3 = \log(2^4)^3 = \log 2^{12} = 12$ and —

 - ▶ Determine log 128⁵ both ways shown above

Other General Knowledge

- $\forall x > 0, \quad \log x < x \qquad \forall n > 0, \quad \log n < n$
- $ightharpoonup \log 1 = 0$, $\log 2 = 1$, $\log 1024 = 10$, $\log 1,048,576 = 20$
- $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$

Thus, if n = 3:

$$\sum_{i=0}^{3} 2^{i} = 2^{0} + 2^{1} + 2^{2} + 2^{3} = 1 + 2 + 4 + 8 = 15$$
— and —

$$2^{n+1} - 1 = 2^{3+1} - 1 = 2^4 - 1 = 16 - 1 = 15$$

► In general:

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^2}{2}$$

Thus,
$$\sum_{i=1}^{5} i = 1+2+3+4+5 = 15$$
 — and —

$$\sum_{i=1}^{5} i = \frac{5(5+1)}{2} = \frac{5*6}{2} = \frac{30}{2} = 15$$