Mat 2345

Week 6

Fall 2013

Student Responsibilities — Week 6

» Reading: Textbook, Section 3.1-3.2
» Assignments:

1. for sections 3.1 and 3.2
2. Worksheet #4 on Execution Times
3. Worksheet #5 on Growth Rates

» Attendance: Strongly Encouraged

Week 8 Overview
> 3.1 Algorithms
» 3.2 Growth of Functions

3.1 Algorithms

» Algorithm: a finite set of unambiguous instructions for
performing a computation or for solving a problem.

» Examples:

» Shampoo Instructions: Lather, Rinse, Repeat
> Recipe for making Italian Beef:
> Place beef roast
1 pkg Au Jus dry gravy mix
1 pkg dry ltalian dressing mix and
1 C water in slow cooker
cook all day or over night
shred beef and serve with French Bread or rolls

vyvyvyVvYyy

» The instructions that come with a sewing pattern
» The instructions for a model airplane or rocket kit

» INSERT DISK AND PRESS ANY KEY TO CONTINUE

Properties of Algorithms

> Input — an algorithm usually has input from a specified set

» Qutput — the solution to the problem, also from a specified set

v

Definiteness — steps of an algorithm must be defined precisely

» Correctness — an algorithm must produce the correct values for
each of the input values

Properties of Algorithms — Continued

» Finiteness — an algorithm must produce the desired output after
a finite (but perhaps large) number of steps for any input in the
set

» Effectiveness — it must be possible to perform each step of an
algorithm exactly and in a finite amount of time

» Generality — an algorithm should be applicable for all problems
of the desired form, not just for a particular set of input values

Finding the Maximum Value in a Finite Sequence —
Pseudocode

integer max(al, a2, ..., an : integers)
currmax := al
for i :=2 ton

if currmax < ai then currmax := ai

{currmax is the largest element}
return currmax;

C++ Implementation of Max

template <class T>
T Max (const vector<T> & L){

// PRE: L not empty, type T is comparable
// POST: returns the largest value in vector L

T mymax = L[0];

for (int i = 1; i < L.size; i++)
if (mymax < L[il)
mymax = L[i];

return mymax;

}

Search Algorithms

> The problem: locate a particular element (target) in a list
» Distinguish between unordered and ordered (sorted) lists

» Two primary algorithms:

> Linear or Sequential Search — look at each item in the list,
first to last, comparing them to target until target is found or we
reach end of list

» Binary Search — (only used on ordered lists) — compare
target to middle element; discard low or high half of list and
repeat on remaining half of list until found or list is empty

The Linear Search Algorithm

integer LinearSearch
(x: integer,

al, a2, ..., an: distinct integers)
i:=1
while (i <= n and x != ai)
i=1i+1

if i <= n
then return i
else return O

{ the value returned is the subscript of term that
equals x, or is 0 if x is not found }

Note: it doesn't matter if the list is ordered or not, this algorithm will
still work

The Binary Search Algorithm

integer BinarySearch(x: integer,

al, a2, ..., an: increasing integers)
i=1 {left endpoint of search interval}
ji=n {right endpoint of search interval}
while i < j
begin
m := floor[(i + j) / 2]
if x > am
then i :=m + 1
else j :=m
end
if x = ai

then return i
else return O

Notes: the value returned is the subscript of term that equals x, or is 0 if
x is not found; can only be used on sorted list

Bubble Sort Algorithm

procedure Bubblesort (al, ..., an:
real numbers with n >= 2)
for i := 1 to n-1
for j :=1ton -1

if a(j) > a(j+1) then swap a(j) and a(j+1)

{ al, ..., an is in increasing order }

Other Sorts:
Selection Sort
Insertion Sort
Merge Sort
Quick Sort
Bucket Sort
Radix Sort

3.2 Growth of Functions

» Time Complexity is a measure of the computational “steps” of
an algorithm relative to the size of input

» Algorithms are analyzed to see how the number of
computational steps grows in relation to the size of input, n

» Once we have a function to compute the time complexity of
algorithms which solve the same problem, we can compare them
to determine which is more efficient

» For example, if the time it takes one sorting algorithm to sort n
values is
_ 3,2
Ti(n) = $n°+3n

and another takes time
To(n) = bnlogn+29

which algorithm should we implement?

Comparing Function Growth

> Quantify the concept: g grows at least as fast as f

» What really matters when comparing the complexity of
algorithms?

» We mostly care about the behavior for large problems (i.e., what
happens for "sufficiently large” input sizes)

» Even bad algorithms can be used to solve "sufficiently small”
problems

» We can ignore some implementation details such as loop counter
incrementation — we can straight-line any loop, etc.

> Remember, the functions we're discussing represent the time
complexities of algorithms.

feOo(g)

g(x

time f(x)

size of input

Big—Oh Notation

> g asymptotically dominates f:
Let f and g be functions from N to R.

Then f € O(g) — f is Big—Oh of g or f is order g — IFF
3k AC Vn[n > k — |f(n)| < Clg(n)], k, C>0]

> In English: for sufficiently large n, if the function f is bounded
from above by a positive, constant multiple of the function g,
then we say f is “Big-Oh" of g.

If limy o0 7 = 0 then f € o(g)

(f is Little—Oh of g, or f is strictly bounded by g)

Proving Asymptotic Domination

K
size of input

To prove f € O(g), given f and g:

» Determine / choose some positive k

» Determine / choose a positive C (which may depend upon
choice of k)

» Once k and C are chosen, the implication must be proven true

Three Important Complexity Classes

Bounds from above
Big — Oh

Growth rates equivalent
Theta

Bounds from below
Big - Omega

Omega Man

Complexity Classes

> The sets O(g), o(g), 2(g), w(g), and ©(g) are called
complexity classes.

» O(g) is a set which contains all the functions which g
dominates.

fis O(g) means f € O(g)

» Wessay f € Q(g) if there are positive constants k and C such
that f(n) > Cg(n) whenever n > k

» If f € O(g) and f € Q(g), then f € ©(g)

> We use "little-oh” and "little-omega” when we have strict
inequality

Example

Let f(n) = 4n+5 and g(n) = n%

We wish to show that f € O(g)

We need to find constants k and C, then show the implication
Vn >k, f(n)< Cg(n)

is true for the values we chose.

To find k, we can set the functions equal, and solve for n:

4n+5 = n?
0 = n —4n—5
0 = (n=5)(n+1)
So,n = 50orn = —1, but nis the size of input and therefore
cannot be negative. Thus, k must be at least 5.
If we choose k = 6, then C can be any positive number greater

than or equal to 1.

All that is left is the proof that Vn > k, f(n) < Cg(n), which we
shall revisit when we discuss induction proofs.

Big—Oh Properties

» fis O(g) I1FF O(f) C O(g)

» If f € O(g)and g € O(f), then O(f) = O(g)

> The set O(g) is closed under addition:
If f € O(g) and h € O(g), then f + h e O(g)

» O(g) is closed under multiplication by a scalar a € R:

If f € O(g) then af € O(g)

l.e., O(g) is a vector space

» Also, as you would expect,
If f € O(g) and g € O(h), then f € O(h)

In particular,

Theorem

Ifi € O(g1) and £ € O(g2), then:

1. i, € O(g182)

2. i+ f € O(max{g, g})

Functional Values for Small n

logy n vn n || n? 2" n! n"

0 1.0000 || 1 1 2 1 1
1.0000 | 1.4142 | 2 | 4 4 2 4
1.5850 | 1.7321 | 3 | 9 8 6 27
2.0000 | 2.0000 || 4 || 16 | 16 24 256
2.3219 | 2.2361 || 5 | 25 | 32 120 3125
2.5850 | 2.4495 || 6 | 36 | 64 720 46,656
2.8074 | 2.6458 || 7 | 49 | 128 5040 823,543
3.0000 | 2.8284 || 8 | 64 | 256 | 40,320 | 1.67 x 107
3.1699 | 3.0000 | 9 | 81 | 512 | 362,880 | 3.87 x 108
3.3219 | 3.1623 || 10 || 100 | 1024 | 3.6 x 10° 1010

Approximate Functional Values for Powers of n

log, n vn n n? 2" n! n"

3.32 | 3.16 || 10" || 10? 1024 3.63(10°) 10
6.64 10 10 || 10* | 1.27(10%) 9.3(10"7) 10%°
9.97 | 31.62 || 10°® | 10° | 1.07(10°") 4(10%°7) 10%00

13.29 | 100 104 || 10° | 2(10%) 2.9(10%:6%) 1040000

16.61 | 316.2 || 10° || 10" | 10%1% 2.9(10%6573) | 10500000

19.93 | 1000 106 102 10301030 8.3(10%:565.708) | 160,000,000

39.86 | 10° 1012 || 10% BIG LARGE HUGE

Important Complexity Classes

Theorem. The hierarchy of several familiar sequences in the sense
that each sequence is Big—Oh of any sequence to its right:

1, logyn, ..., /n, /n, \/n, n, nlogyn, ny/n, n®, n*, n*, ..., 2" nl n"

Similarly, stated in set notation:
O(1) C O(logn) € O(n) € O(nlogn) C O(n*) € O(r') C O(c") € O(n!)

where j > 2andc > 1

Time Equivalences

SECOND 1 10°
MILLISECONDS 1,000 103
MICROSECONDS 1,000,000 10°

NANOSECONDS 1,000,000,000 10°

Largest Problem Sizes

Let f(n) be the time complexity of an algorithm in
MICROSECONDS.

The largest problem of size n that can be solved in:

1 SECOND s f(n)/10°

1 MINUTE 18 f(n)/(60 10°)

1 HOUR 1s f(n)/(60 %60 % 10°)

1 DAY 15 f(n)/(24 % 60 % 60 * 10°)

1 MONTH 18 £(n)/(30 %24 % 60 * 60 * 10°)

1 YEAR 18 £(n)/(12 % 30 % 24 % 60 * 60 10°)

1 CENTURY IS f(n)/(100 % 12 + 30 * 24 % 60 60 * 10°)

Largest Problems “Do—able” in 1 Second

1. Let f(n) = n. Then the largest problem for which we can
compute an answer in one second is:
n/10% = 1
n = 10°
2. Let f(n) = n?. Then the largest problem for which we can
compute an answer in one second is:
n?/10° = 1
n = V105 = 103

3. Let f(n) = 2". Then the largest problem for which we can
compute an answer in one second is:

27/106 = 1
2" = 105 ~ 219
n ~ 19

Let f(n) = nl. Then the largest problem for which we can
compute an answer in one second is:

nl/10% = 1
nl = 10°
Here, it helps to use a calculator. .., and we find
9! = 362,880 — too small

10! = 3,628,880 — too large

(Recall that n is input size)

Review — Exponents

XaXb _ Xa+b 2527 _ 212
a 8
% — xab %2 — 36
(Xa)b — Xab (52)3 _ 56
Notes
X" 4+ X" = 2x"...... not x2" 3?2 4+ 2 =23
55 + 5% = 2T 4+ 2T =
on 4 oon — 2100 + 2100 —
3% 4+ 5% = 2" 4 30—

Review — Logarithms

Logarithm: x? = b IFF log, b = a
23 = 81FF log,8 = 3

5% = 625 IFF log

= IFF log3 81 = 4

Theorem. logab = loga + logh

log 32 5

log(2°) =
= log(8«4)
= log8 + log4

log23 + log2?
=3+2=5,

Other Formulae You Should Know

> log2 = loga — logh
> log®2 = Iog%z = log2°2 = log23 = 3 —and —
> log32 = log32 — log4 = log2® — log2? =5 — 2 = 3

> Determine log % both ways shown above

> loga? = bloga
> log16® = log(2%)® = log2!? = 12 — and —

> log16® = 3logl6 = 3log2* = 3%4 = 12

» Determine log 128° both ways shown above

Other General Knowledge

»Vx >0, logx < x Yn >0, logn < n

> logl = 0, log2 = 1, logl024 = 10, logl,048,576 = 20

> Y2 =2nfl -1
Thus, if n = 3:
Y2 =20 421 422 4 2% =1+42+448 =15

— and —
ontl 1 = 2341 1 =24 -1 =16 -1 =15

> In general:
Yo d = a";:ll
. +1 2
Y= n(nz)z%
Thus, Y27, i = 142+3+4+5 =15 —and —
5 . 5(5+1 6 30
Yia i o= (2):57:?:15

