
Mat 2345 — Discrete Math

Week 13

Fall 2013

Student Responsibilities — Week 13

I Reading: Textbook, Section 7.1 & 7.2

I Assignments: Sec 7.1, 7.2

I Attendance: De–Lightfully Encouraged

Week 12 Overview

I Sec 7.1 Recurrence Relations

I Sec 7.2 Solving Linear Recurrence Relations

Section 7.1
Algorithmic Complexity and Recurrence Relations

I A recursive definition of a sequence specifies one or more initial
terms plus a rule for determining subsequent terms from those
that precede them.

I A recurrence relation for the sequence {an} is an equation that
expresses an in terms of one or more of the previous terms of the
sequence, namely, a0, a1, . . . , an−1, for all integers n with n ≥ n0,
where n0 is a nonnegative integer.

I The initial conditions for a sequence specify the terms that
precede the first term where the recurrence relation takes effect.

Recurrence Relations, Cont.

I A sequence is called a solution of a recurrence relation if its
terms satisfy the recurrence relation.

I A Recurrence Relation is a way to define a function by an
expression involving the same function.

Modeling with Recurrence Relations – Rabbits

I A pair of rabbits (one of each sex) is placed on an island. A pair
of rabbits does not breed until they are 2 months old. After they
are 2 months old, each pair produces another pair each month.

I Fibonacci Numbers (Pairs of Rabbits)
F(0) = 1, F(1) = 1,

F(n) = F(n-1) + F(n-2)

I If we wish to compute the 120th Fibonacci Number, F(120), we
could compute F(0), F(1), F(2), ...F(118), and F(119)

to arrive at F(120).

I Thus, to compute F(k) in this manner would take k steps.

Fibonacci Closed Form Expression

I It would be more convenient, not to mention more efficient, to
have an explicit or closed form expression to compute F(n).

I Actually, for Fibonacci numbers, it’s:

F (n) = 1√
5

(
1+
√
5

2

)n
− 1√

5

(
1−
√
5

2

)n

∀ natural numbers n ≥ 1



Modeling with Recurrence Relations – Compound Interest

I General problem: A person makes a deposit (principle) into a
savings account which yields a yearly interest rate, compounded
annually. How much will be in the account after 30 years?

I Let Pn represent the amount in the account after n years.

I Since Pn will equal the amount after n − 1 years plus interest,
the sequence {Pn} satisfies the recurrence relation:

Pn = Pn−1 + rPn−1 = (1 + r)Pn−1

Recurrence Relations – Compound Interest

I We can use an iterative approach to find a formula for Pn:

P1 = (1 + r)P0

P2 = (1 + r)P1 = (1 + r)2P0

P3 = (1 + r)P2 = (1 + r)3P0

...

Pn = (1 + r)Pn−1 = (1 + r)nP0

I Let’s assume $10,000 was deposited at 11% interest rate,
compounded annually, for 30 years.

I Then P30 = (1.11)3010, 000 = $228, 922.97

I See other examples of modeling with RR in textbook.

Section 7.2 — Solving Recurrence Relations

I Recurrence relations which express the terms of a sequence as a
linear combination of previous terms can be explicitly solved
in a systematic way.

I Definition A linear homogeneous recurrence relation of
degree k with constant coefficients is a recurrence relation of
the form:

an = c1an−1 + c2an−2 + · · ·+ ckan−k

where c1, c2, . . . , ck are real numbers, and ck 6= 0

I Linear: the right–hand side is a sum of multiples of the previous
terms of the sequence.

I Homogeneous: no terms occur that are not multiples of the
aj ’s

I Constant Coefficients: the coefficients of all the terms of the
sequence are constants (rather than functions dependent on n)

I Degree: is k because an is expressed in terms of the previous k
terms of the sequence.

A sequence satisfying the recurrence relation in the definition is
uniquely determined by this recurrence relation and the k initial
conditions:

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1,

Examples of linear homogeneous recurrence relations:

Pn = 3Pn−1 degree one
fn = fn−1 + fn−2 degree two
an = an−5 degree five

Examples which are not linear homogeneous recurrence relations:

an = an−1+a2n−2 not linear
Hn = 2Hn−1 + 2 not homogeneous
Bn = nBn−5 doesn’t have constant

coefficient



Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients

Idea: look for solutions of the form an = rn, where r is a constant.

Note: an = rn is a solution of the recurrence relation:

an = c1an−1 + c2an−2 + . . . + ckan−k

if and only if

rn = c1r
n−1 + c2r

n−2 + . . . + ck r
n−k

Divide both sides of the previous equation by rn−k , and subtract
the right–hand side:

rk − c1r
k−1 − c2r

k−2 − . . . − ck−1r − ck = 0

This is the characteristic equation of the recurrence relation.

Note: The sequence {an} with an = rn is a solution IFF r is a
solution to the characteristic equation.

Characteristic Roots

The solutions of the characteristic equation are called the
characteristic roots of the recurrence relation.

They can be used to create an explicit formula for all the solutions
of the recurrence relation.

Characteristic Roots

Theorem 1. Let c1 and c2 be real numbers. Suppose that

r2 − c1r − c2 = 0

has two distinct roots, r1 and r2. Then the sequence {an} is a
solution of the recurrence relation

an = c1an−1 + c2an−2

if and only if

an = ∝1 r
n
1 + ∝2 r

n
2

for n = 0, 1, 2, . . . , where ∝1 and ∝2 are constants

Solving Recurrence Relations, Example I

Let: a0 = 2, a1 = 7, and an = an−1 + 2an−2

We see that c1 = 1 and c2 = 2

Characteristic Equation: r2 − r − 2 = 0

Roots: r = 2 and r = −1

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 2n + ∝2 (−1)n

for some constants ∝1 and ∝2

Solving Recurrence Relations, Example I — Cont.

From the initial conditions, it follows that:

a0 = 2 = ∝1 (20) + ∝2 (−1)0

a1 = 7 = ∝1 (21) + ∝2 (−1)1

Solving these two equations yields:
∝1 = 3 and ∝2 = − 1

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 3(2)n − (−1)n



Solving Recurrence Relations, Example II

Let: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2

We see that c1 = 1 and c2 = 1

Characteristic Equation: r2 − r − 1 = 0

Roots: r = 1+
√
5

2 and r = 1−
√
5

2

Thus, it follows that the Fibonacci numbers are given by

Fn = ∝1 (1+
√
5

2 )n + ∝2 (1−
√
5

2 )n

for some constants ∝1 and ∝2

Solving Recurrence Relations, Example II — Cont.

From the initial conditions, it follows that:

F0 = 0 = ∝1 + ∝2

F1 = 1 = ∝1 (1+
√
5

2 ) + ∝2 (1−
√
5

2 )

Solving these two equations yields:

∝1= 1√
5

and ∝2= − 1√
5

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {Fn} with:

Fn = 1√
5

(1+
√
5

2 )n − 1√
5

(1−
√
5

2 )n

Solving Recurrence Relations, Example III

Let: a0 = 1, a1 = 1, and an = 2an−1 + 3an−2

We see that c1 = 2 and c2 = 3

Characteristic Equation: r2 − 2r − 3 = 0

Roots: r = 3 and r = −1

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 3n + ∝2 (−1)n

for some constants ∝1 and ∝2

Solving Recurrence Relations, Example III — Cont.

From the initial conditions, it follows that:

a0 = 1 = ∝1 + ∝2

a1 = 1 = ∝1 (3) + ∝2 (−1)

Solving these two equations yields: ∝1 = 1
2 and ∝2 = 1

2

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 1
2(3)n + 1

2(−1)n

Solving Recurrence Relations, Example IV

Let: a0 = 1, a1 = −2, and an = 5an−1 − 6an−2

We see that c1 = 5 and c2 = −6

Characteristic Equation: r2 − 5r + 6 = 0

Roots: r = 2 and r = 3

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 2n + ∝2 3n

for some constants ∝1 and ∝2

Solving Recurrence Relations, Example IV — Cont.

From the initial conditions, it follows that:

a0 = 1 = ∝1 + ∝2

a1 = -2 = ∝1 (2) + ∝2 (3)

Solving these two equations yields:

∝1 = 5 and ∝2 = − 4

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 5(2)n − 4(3)n



Solving Recurrence Relations, Example V

Let: a0 = 0, a1 = 1, and an = an−1 + 6an−2

We see that c1 = 1 and c2 = 6

Characteristic Equation: r2 − r − 6 = 0

Roots: r = 3 and r = −2

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 3n + ∝2 (−2)n

for some constants ∝1 and ∝2

Solving Recurrence Relations, Example V

From the initial conditions, it follows that:

a0 = 0 = ∝1 + ∝2

a1 = 1 = ∝1 (3) + ∝2 (−2)

Solving these two equations yields:

∝1 = 1
5 and ∝2 = − 1

5

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 1
5(3)n − 1

5(−2)n

What To Do When There’s Only One Root?

Theorem 1 does not apply when there is a single characteristic
root of multiplicity two.

Theorem 2. Let c1 and c2 be real numbers. Suppose that

r2 − c1r − c2 = 0

has only one root, r0. Then the sequence {an} is a solution of the
recurrence relation

an = c1an−1 + c2an−2

if and only if

an = ∝1 r
n
0 + ∝2 nr

n
0

for n = 0, 1, 2, . . . , where ∝1 and ∝2 are constants

Notice the extra factor of n in the second term!

Single Root, Example I

Let: a0 = 1, a1 = 6, and an = 6an−1 − 9an−2

We see that c1 = 6 and c2 = −9

Characteristic Equation: r2 − 6r + 9 = 0

Root: r = 3 with multiplicity 2

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 3n + ∝2 n(3)n

for some constants ∝1 and ∝2

Single Root, Example I — Cont.

From the initial conditions, it follows that:

a0 = 1 = ∝1

a1 = 6 = ∝1 (3) + ∝2 (3)

Solving these two equations yields: ∝1 = 1 and ∝2 = 1

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = (3)n + n(3)n



Single Root, Example II

Let: a0 = 1, a1 = 3, and an = 4an−1 − 4an−2

We see that c1 = 4 and c2 = −4

Characteristic Equation: r2 − 4r + 4 = 0

Root: r = 2 with multiplicity 2

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 2n + ∝2 n2n

for some constants ∝1 and ∝2

Single Root, Example II — Cont.

From the initial conditions, it follows that:

a0 = 1 = ∝1

a1 = 3 = ∝1 (2) + ∝2 (2)

Solving these two equations yields: ∝1 = 1 and ∝2 = 1
2

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 2n + 1
2n2n = 2n + n2n−1

Single Root, Example III

Let: a0 = 1, a1 = 12, and an = 8an−1 − 16an−2

We see that c1 = 8 and c2 = −16

Characteristic Equation: r2 − 8r + 16 = 0

Root: r = 4 with multiplicity 2

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 4n + ∝2 n4n

for some constants ∝1 and ∝2

Single Root, Example III — Cont.

From the initial conditions, it follows that:

a0 = 1 = ∝1

a1 = 12 = ∝1 (4) + ∝2 (4)

Solving these two equations yields: ∝1 = 1 and ∝2 = 2

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = (4)n + 2n(4)n

Single Root, Example IV

Let: a0 = 2, a1 = 5, and an = 2an−1 − an−2

We see that c1 = 2 and c2 = −1

Characteristic Equation: r2 − 2r + 1 = 0

Root: r = 1 with multiplicity 2

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 1n + ∝2 n(1)n

for some constants ∝1 and ∝2

Single Root, Example IV — Cont.

From the initial conditions, it follows that:

a0 = 2 = ∝1

a1 = 5 = ∝1 (1) + ∝2 (1)

Solving these two equations yields: ∝1 = 2 and ∝2 = 3

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 2(1)n + 3n(1)n = 2 + 3n



Solving Recurrence Relations

Definition. A linear homogeneous recurrence relation of
degree k with constant coefficients is a recurrence relation of
the form:

an = c1an−1 + c2an−2 + . . . + ckan−k

where c1, c2, . . . , ck are real numbers, and ck 6= 0.

Theorem 3. Let c1, c2, . . . , ck be real numbers. Suppose that
the characteristic equation

rk − c1r
k−1 − . . . − ck = 0

has k distinct roots, r1, r2, . . . , rk . Then the sequence {an} is a
solution of the recurrence relation

an = c1an−1 + c2an−2 + . . . + ckan−k

if and only if

an = ∝1 r
n
1 + ∝2 r

n
2 + . . . + ∝k rnk

for n = 0, 1, 2, . . . , where ∝1, ∝2, . . . , ∝k are constants

Multiple Distinct Roots, Example I

Let: a0 = 2, a1 = 5, a2 = 15, and
an = 6an−1 − 11an−2 + 6an−3

We see that c1 = 6, c2 = −11, and c3 = 6

Characteristic Equation:
r3 − 6r2 + 11r − 6 = (r − 1)(r − 2)(r − 3) = 0

Roots: r = 1, r = 2, and r = 3

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 1n + ∝2 2n + ∝3 3n

for some constants ∝1, ∝2, and ∝3

Multiple Distinct Roots, Example I — Cont.

From the initial conditions, it follows that:

a0 = 2 = ∝1 + ∝2 + ∝3

a1 = 5 = ∝1 + ∝2 (2) + ∝3 (3)

a2 = 15 = ∝1 + ∝2 (4) + ∝3 (9)

Solving: ∝1 = 1 , ∝2 = − 1, and ∝3 = 2

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 1 − 2n + 2(3)n.

Multiple Distinct Roots, Example II

Let: a0 = 4, a1 = −9, a2 = −9, and
an = 4an−1 − an−2 − 6an−3

We see that c1 = 4, c2 = −1, and c3 = −6

Characteristic Equation:
r3 − 4r2 + r + 6 = (r + 1)(r − 2)(r − 3) = 0

Roots: r = −1, r = 2, and r = 3

Thus, the sequence {an} is a solution to the recurrence relation
IFF

an = ∝1 (−1)n + ∝2 2n + ∝3 3n

for some constants ∝1, ∝2, and ∝3

Multiple Distinct Roots, Example II — Cont.

From the initial conditions, it follows that:

a0 = 4 = ∝1 (−1)0 + ∝2 20 + ∝3 30

= ∝1 + ∝2 + ∝3

a1 = -9 = ∝1 (−1)1 + ∝2 21 + ∝3 31

= − ∝1 + 2 ∝2 + 3 ∝3

a2 = -9 = ∝1 (−1)2 + ∝2 22 + ∝3 32

= ∝1 + 4 ∝2 + 9 ∝3



Multiple Distinct Roots, Example II — Cont.

Solving: ∝1 = 5 , ∝2 = 1, and ∝3 = − 2

Therefore, the solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = 5(−1)n + 2n − 2(3)n.

Solutions to General Recurrence Relations

The next theorem states the most general result about linear
homogeneous recurrence relations with constant coefficients,
allowing the characteristic equation to have multiple roots.

Key Point: for each root r of the characteristic equation, the
general solution has a summand of the form P(n)rn, where P(n) is
a polynomial of degree m − 1, with m the multiplicity of this
root.

Theorem 4. Let c1, c2, . . . , ck be real numbers. Suppose that
the characteristic equation

rk − c1r
k−1 − . . . − ck = 0

I has t distinct roots, r1, r2, . . . , rt , with

I multiplicities m1,m2, . . . ,mt , respectively, so

I mi ≥ 1 for i = 1, 2, . . . , t, and

I m1 + m2 + . . . + mt = k.

Then a sequence {an} is a solution of the recurrence relation
an = c1an−1 + c2an−2 + . . . + ckan−k

if and only if

an = (∝1,0 + ∝1,1 n + . . . + ∝1,m1−1 n
m1−1)rn1

+ (∝2,0 + ∝2,1 n + . . . + ∝2,m2−1 n
m2−1)rn2

+ . . .
+ (∝t,0 + ∝t,1 n + . . . + ∝t,mt−1 n

mt−1)rnt

for n = 0, 1, 2, . . . , where the ∝i ,j are constants

for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1

Multiple Roots, Example I

If a linear homogeneous recurrence relation has a characteristic
equation with roots 2, 2, 2, 5, 5, and 9, then the form of a general
solution is:

an = (∝1,0 + ∝1,1 n + ∝1,2 n
2)2n

+ (∝2,0 + ∝2,1 n)5n

+ (∝3,0)9n

Multiple Roots, Example II

Let: a0 = 1, a1 = −2, a2 = −1, and
an = −3an−1 − 3an−2 − an−3

We see that c1 = −3, c2 = −3, and c3 = −1

Characteristic Equation: r3 + 3r2 + 3r + 1 = 0

Since r3 + 3r2 + 3r + 1 = (r + 1)3, the characteristic
equation has a single root, r = −1, of multiplicity three.

By Theorem 4., the solutions of this recurrence relation are of the
form:

an = ∝1,0 (−1)n + ∝1,1 n(−1)n + ∝1,2 n
2(−1)n

for some constants ∝1,0, ∝1,1, and ∝1,2



Multiple Roots, Example II — Cont.

From the initial conditions, it follows that:

a0 = 1 = ∝1,0 (−1)0 + ∝1,1 01(−1)0 + ∝1,2 02(−1)0

a1 = -2 = ∝1,0 (−1)1 + ∝1,1 11(−1)1 + ∝1,2 12(−1)1

a2 = -1 = ∝1,0 (−1)2 + ∝1,1 21(−1)2 + ∝1,2 22(−1)2

or

1 = ∝1,0

-2 = − ∝1,0 − ∝1,1 − ∝1,2

-1 = ∝1,0 + 2 ∝1,1 + 4 ∝1,2

Multiple Roots, Example II — Cont.

Solving these three equations simultaneously yields:

∝1,0 = 1, ∝1,1 = 3, ∝1,2 = − 2

Thus, the unique solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = (1 + 3n − 2n2)(−1)n

Multiple Roots, Example III

Let: a0 = 1, a1 = 1, a2 = 2, and
an = 3an−1 − 3an−2 + an−3

We see that c1 = 3, c2 = −3, and c3 = 1

Characteristic Equation: r3 − 3r2 + 3r − 1 = 0

Since r3 − 3r2 + 3r − 1 = (r − 1)3, the characteristic
equation has a single root, r = 1, of multiplicity three.

By Theorem 4., the solutions of this recurrence relation are of the
form:

an = ∝1,0 (1)n + ∝1,1 n(1)n + ∝1,2 n
2(1)n

for some constants ∝1,0, ∝1,1, and ∝1,2

Multiple Roots, Example III — Cont.

From the initial conditions, it follows that:

a0 = 1 = ∝1,0 (1)0 + ∝1,1 01(1)0 + ∝1,2 02(1)0

a1 = 1 = ∝1,0 (1)1 + ∝1,1 11(1)1 + ∝1,2 12(1)1

a2 = 2 = ∝1,0 (1)2 + ∝1,1 21(1)2 + ∝1,2 22(1)2

or

1 = ∝1,0

1 = ∝1,0 + ∝1,1 + ∝1,2

2 = ∝1,0 + 2 ∝1,1 + 4 ∝1,2

Solving these three equations simultaneously yields:

∝1,0 = 1, ∝1,1 = − 1
2 , ∝1,2 = 1

2

Multiple Roots, Example III — Cont.

Thus, the unique solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = (1 − 1
2n + 1

2n
2)(1)n

= 1 − 1
2n + 1

2n
2

=
2 − n + n2

2

Multiple Roots, Example IV

Let: a0 = 0, a1 = 1, a2 = 2, a3 = 3, and
an = 2an−2 − an−4

We see that c1 = 0, c2 = 2, c3 = 0, and c4 = −1

Characteristic Equation: r4 − 0r3 − 2r2 − 0r + 1 = 0

or, r4 − 2r2 + 1 = 0

Since r4 − 2r2 + 1 = (r2 − 1)2 = (r − 1)2(r + 1)2, the
characteristic equation has two roots, r1 = 1 and r2 = −1, each of
multiplicity two.

Solutions of this recurrence relation are of the form:

an = (∝1,0 + ∝1,1 n)(1)n + (∝2,0 + ∝2,1 n)(−1)n

for some constants ∝1,0, ∝1,1, ∝2,0, and ∝2,1



Multiple Roots, Example IV — Cont.

From the initial conditions, it follows that:

a0 = 0 = (∝1,0 + ∝1,1 01)(1)0 + (∝2,0 + ∝2,1 01)(−1)0

= ∝1,0 + ∝2,0

a1 = 1 = (∝1,0 + ∝1,1 11)(1)1 + (∝2,0 + ∝2,1 11)(−1)1

= ∝1,0 + ∝1,1 − ∝2,0 − ∝2,1

a2 = 2 = (∝1,0 + ∝1,1 21)(1)2 + (∝2,0 + ∝2,1 21)(−1)2

= ∝1,0 + 2 ∝1,1 + ∝2,0 + 2 ∝2,1

a3 = 3 = (∝1,0 + ∝1,1 31)(1)3 + (∝2,0 + ∝2,1 31)(−1)3

= ∝1,0 + 3 ∝1,1 − ∝2,0 − 3 ∝2,1

Solving these three equations simultaneously yields:

∝1,0 = ∝2,0 = ∝2,1 = 0 and ∝1,1 = 1

Multiple Roots, Example IV — Cont.

Thus, the unique solution to the recurrence relation and initial
conditions is the sequence {an} with:

an = (0 + 1n)1n + (0 + 0n)(−1)n

= n


