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Student Responsibilities — Week 15

I Reading: Textbook, Section 11.1 – 11.3

I Attendance: Finally! Encouraged

Week 15 Overview
How Boolean logic and Boolean algebra relate to computer circuits
and chips.

I Sec 11.1 Boolean Functions

I Sec 11.2 Representing Boolean Functions

I Sec 11.3 Logic Gates

9.1 Boolean Functions

Boolean Algebra provides the operations [complement,
product, sum] and rules for working with the set {0, 1}.

Complement (denoted with bar): 0 = 1, 1 = 0.

Product (denoted with AND, •, or implicit):
1 • 1 = 1 1 • 0 = 0 0 • 1 = 0 0 • 0 = 0

Sum (denoted with OR or +):
1 + 1 = 1 1 + 0 = 1 0 + 1 = 1 0 + 0 = 0

Precedence of Operators: complement, product, sum

Example: (1 + 0) • (0 • 1) = 1 • 0 = 1 • 1 = 1

Boolean Functions

Let B = {0, 1}

I A Boolean variable x assumes values only from B.

I A Boolean Function of Degree n is a function from Bn, the
set {(x1, x2, . . . , xn)|xi ∈ B, 1 ≤ i ≤ n}, to B.

Function values are often displayed in tables.

Boolean Expressions

I Boolean Expressions, which can represent Boolean functions,
are made up from Boolean variables and operations.

I They are defined recursively as follows:

I 0, 1, x1, x2, . . . , xn are Boolean expressions.

I If E1 and E2 are Boolean expressions, then so are their
complements, their product, and their sum:

E1, (E1E2), and (E1 + E2)

I Each Boolean expression represents a Boolean function.

Function Evaluation

To evaluate a function, we substitute 0’s and 1’s for the variables
in the same way we did for Truth Tables.

Table 1. F (x , y , z) = x + yz

x y z x yz F (x , y , z) = x + yz

1 1 1 0 1 1

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 0 0 0

0 1 1 1 1 1

0 1 0 1 0 1

0 0 1 1 0 1

0 0 0 1 0 1



Equivalence of Boolean Functions

Two Boolean functions F and G are equivalent if and only if
when they are evaluated on the variables b1, b2, . . . , bn ∈ B:

F (b1, b2, . . . , bn) = G (b1, b2, . . . , bn)

All these functions are equivalent: xy xy + 0 xy • 1

Boolean Operators on Functions

I The complement of the Boolean function F is the function F ,
where:

F (x1, . . . , xn) = F (x1, . . . , xn)

I The Boolean sum F + G is defined by:

(F + G )(x1, . . . , xn) = F (x1, . . . , xn) + G (x1, . . . , xn)

I The Boolean product FG is defined by:

(FG )(x1, . . . , xn) = F (x1, . . . , xn)G (x1, . . . , xn)

Degree of a Function

The degree of a Boolean function is the number of different
variables upon which it depends.

F (x1, . . . , xn) has degree n.

Table 3. Boolean Functions of Degree 2.

x y F1 F2 F3 F4 F5 F6 F7 F8

1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0

x y F9 F10 F11 F12 F13 F14 F15 F16

1 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0

Table 4. The Number of Boolean Functions of Degree n

Degree Number

1 4

2 16

3 256

4 65,536

5 4,294,967,296

6 18,446,744,073,709,551,616

Boolean Function with degree n

There are 2n n-tuples of 0’s and 1’s — representing all possible
combinations of the n variable values.

Each function is an assignment of 0’s and 1’s to each of these
n–tuples

Hence, there are 22
n

different Boolean functions of degree n.

Boolean Identities

Identity Name

x = x Law of Double Complement

x + x = x
xx = x

Idempotent Laws

x + 0 = x
x(1) = x

Identity Laws

x + 1 = 1
x(0) = 0

Dominance Laws

x + y = y + x
xy = yx

Commutative Laws

x + (y + z) = (x + y) + z
x(yz) = (xy)z

Associative Laws

x + yz = (x + y) (x + z)
x(y + z) = xy + xz

Distributive Laws

xy = x + y
x + y = xy

De Morgan’s Laws

Boolean Algebra
A Boolean algebra is a set B with:

I two binary operations, ∨ and ∧
I elements 0 and 1

I a unary operation such that the following properties hold
∀x , y , z ∈ B:

x ∨ 0 = x
x ∧ 1 = x

Identity Laws

x ∨ x = 1
x ∧ x = 0

Dominance Laws

(x ∨ y) ∨ z = x ∨ (y ∨ z)
(x ∧ y) ∧ z = x ∧ (y ∧ z)

Associative Laws

x ∨ y = y ∨ x
x ∧ y = y ∧ x

Commutative Laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Distributive Laws



Equivalent Collections

Collections which satisfy all three
Boolean Algebra properties include:

I B = {0, 1}, with {+, •} and the complement operator

I The set of propositions in n variables with the ∨ and ∧
operators, F and T, and the negation operator.

I The set of subsets of a universal set U with ∩ and ∪, ∅, and set
complementation operator.

They All Tie Together

To establish results about each of

Boolean expressions

Propositions

and

Sets,

we need only prove results about abstract Boolean Algebras!

Section 11.3 — Logic Gates

I Computer chips are made up of vast numbers of circuits.

I Circuits can be designed using the rules of Boolean algebra.

I The basic components of circuits are called gates and each type
of gate implements a Boolean operation.

I We can use the rules of Boolean algebra to combine gates into
circuits that perform various tasks. Input and output will both
be from the set 0, 1.

I The combinatorial circuits or gating networks we’ll be
studying depend only upon the inputs, and not on the current
state of the circuit - i.e., they have no memory capabilities.

I The three types of elements we’ll use to create circuits are:

I the inverter, which produces the complement of its input value;

I the OR gate, which produces the sum of its inputs, and

I the AND gate, which produces the product of its inputs

Symbolic Gates

The symbols used for these types of elements are shown below:

I inverter:

x x

I OR gate:
x

y
x + y

I AND gate:

x

y
xy

Multiple Input Gates

I We can also have multiple input OR and AND gates. Examples
of gates with n inputs are shown below:

1 2 nx x ... x

x + x + ... + x1 2 n

x
x

x

x
x

x

1
2

n

1
2

n

I Inputs enter inverters and gates from the their left sides and
output is shown leaving from their right sides. There is only one
way for current to flow through these components.



I Combinational circuits can be constructed using a combination
of inverters, OR, and AND gates.

I When combinations of circuits are formed, some gates may share
inputs. There are two common ways to show this:

I One is to give the same name to the separate inputs for each
gate, as shown in the first figure on the next slide.

I The other is to use branches that indicate all gates using a given
input. This is shown in the second figure.
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Examples of Circuits: (x + y)x̄

x

y

x

x+y

(x+y)x

x

Examples of Circuits: x̄(y + z̄)
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Two–Switch Light (0 = off, 1 = on)

Flipping either switch should turn the light on
if it’s off, and off if it’s on.

2–switch light

x y F(x, y)
1 1 1

1 0 0

0 1 0

0 0 1

Three–Switch Light (0 = off, 1 = on)

3–switch light

x y z F(x, y, z)
1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0



Three Voters with Majority Rule

3–Votes, Majority Rules

x y z M(x, y, z)
1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

Adders

I One of the most common uses for a computer is numerical
computation.

I We will next see how we can design circuits to carry out addition.

I A half adder adds two bits without considering any carry from a
previous addition.

I The input will be two values, x and y , each either 0 or 1.

I The output will be the sum bit s, and the carry bit, c .

I This circuit is called a multiple output circuit since it has more
than one output.

Half–Adder I/O
INPUT OUTPUT
x y s c
1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0

Sum=(x+y)(xy)

Carry=xy

x

y

x+y

xy xy

Full Adder

I The full adder is used to compute the sum bit and carry bit
when two bits and a carry are added.

I The inputs to the full adder are the bits x and y , and the
carry ci .

I The outputs are the sum bit s and the new carry ci+1.

Full–Adder I/O
INPUT OUTPUT

x y ci s ci+1

1 1 1 1 1

1 1 0 0 1

1 0 1 0 1

1 0 0 1 0

0 1 1 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

This full adder utilizes half adders rather than building them from
scratch:


