MAT234	
Discrete	
Math	

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier

MAT2345 Discrete Math

Dr. Van Cleave

Fall 2013

General Guidelines

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

Syllabus

Schedule (note exam dates)

 Homework, Worksheets, Quizzes, and possibly Programs & Reports

Academic Integrity Guidelines — Do Your Own Work

Course Web Site: www.eiu.edu/~mathcs

Course Overview

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

An introduction to the mathematical foundations needed by computer scientists.

- Logic & proof techniques
- Sets, functions
- Algorithms developing and analyzing
- Recursion & induction proofs
- Recurrence relations
- If time permits:
 - Boolean algebra, logic gates, circuits
 - Modeling computation

Course Themes

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

- Mathematical Reasoning proofs, esp by induction
- Mathematical Analysis comparison of algorithms, function growth rates
- Discrete Structures abstract math structures, the relationship between discrete and abstract structures
- Algorithmic Thinking algorithmic paradigms
- Applications and Modeling can we predict behavior?

Student Responsibilities — Week 1

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier ■ **Reading**: Textbook, Sections 1.1 – 1.4

Assignments: See Homework Assignments Handout

Attendance: Strongly Encouraged

	Week 1 Overview
MAT2345 Discrete Math Dr. Van	
Dr. Van Cleave	
Guidelines	1.1 Propositional Logic
The Course Propositional Logic	1.2 Propositional Equivalences
Propositional Equivalences	1.3 Predicates and Quantifiers
Predicates & Quantifiers Nested Quantifiers	1.4 Nested Quantifiers

Section 1.1 Propositional Logic

MAT2345 Discrete Math

> Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers The rules of logic are used to distinguish between valid and invalid mathematical arguments.

 Logic rules have many applications in computer science. They are used in:

- the design of computer circuits
- the construction of computer programs
- the verification of the correctness of programs
- as the basis of some Artificial Intelligence programming languages.
- and many other ways as well

Propositions

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifier PROPOSITION: a statement that is either true or false, but not both.

Examples (which are true?):

- The zip code for Charleston, IL is 61920.
- The Jackson Avenue Coffee Shop is located on Jackson Avenue.
- 1 + 4 = 5
- 1 + 3 = 5
- The title of our course is Mathemagics.

Counterexamples:

- Where am I?
- Stop!

$$x + 2y = 4$$

Vocabulary

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifiers Variables are generally used to represent propositions:
 p, q, r, s, ...

Tautology: a proposition which is always **true**.

- **Contradiction**: a proposition which is always **false**.
- Compound Proposition: a new proposition formed from existing propositions using logical operators (aka connectives).
- Negation: let p be a proposition. The negation of p is the proposition "It is not the case that p," denoted by ¬p or ~ p.

Truth Tables

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers **Truth Tables** display the relationship between the truth values of propositions.

The truth table for **negation**:

When proposition p is true, its negation is false. When it is false, its negation is true.

The negation of "Today is Monday" is "Today is not Monday" or "It is not the case that today is Monday"

Conjunction

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifier **Conjunction**: the compound proposition p and q, or $p \land q$ which is **true** when both p and q are **true** and **false** otherwise.

Let p =**Today is Monday**, and q = **It is raining**. What is the value of each of the following conjunctions?

$$p \wedge q$$

$$p \wedge \neg q$$

Disjunction

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifier **Disjunction**: the compound proposition p or q, or $p \lor q$ which is false when both p and q are false and true otherwise.

р	q	$p \wedge q$	$p \lor q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

Exclusive Or

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifier **Exclusive Or**: $p \oplus q$, the proposition that is **true** when exactly **one** of *p* and *q* is **true**, and is **false** otherwise.

• "Fries or baked potato come with your meal"

• "Do the dishes or go to your room"

р	q	$p\oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Implication

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier **Implication**: $p \rightarrow q$ (IF P THEN Q), the proposition that is true unless p is true and q is false (i.e., $T \rightarrow F$ is false).

p is the antecedent or premise

q is the conclusion or consequence

	Imp	lication
p	q	p ightarrow q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Implications Related To p ightarrow q

MAT2345 Discrete Math		
Dr. Van Cleave	Direct Statement	p ightarrow q
Guidelines	Jtatement	
The Course	Converse	q ightarrow p
Propositional Logic		$\neg p \rightarrow \neg q$
Propositional	Inverse	p / g
Equivalences Predicates & Quantifiers	Contrapositive	eg q ightarrow eg p
Nested Quantifiers	Biconditional	$p \leftrightarrow q$ or p iff q
		the proposition which is true when p and q have the <u>same</u> truth values, and false otherwise.

Example

MAT2345 Discrete Math Dr. Van Cleave	Direct:	If today is Monday, then MAT2345 meets today.
Guidelines The Course Propositional	Converse:	If MAT2345 meets today, then today is Monday.
Logic Propositional Equivalences Predicates & Quantifiers	Inverse:	If today is not Monday, then MAT2345 does not meet today.
Quantifiers	Contrapositive:	If MAT2345 does not meet today, then today is not Monday.

Implications — aka Conditionals

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier

Converse, Inverse, and Contrapositive

Direct Statement	p ightarrow q	lf p, then q
Converse	q ightarrow p	If q , then p
Inverse	$\sim ho ightarrow q$	If not p , then not q
Contrapositive	$\sim q ightarrow \sim p$	If not q , then not p

Let p = "they stay" and q = "we leave" Direct Statement ($p \rightarrow q$, in English):

Converse:

Inverse:

Contrapositive:

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

```
Let p = "I surf the web" and q = "I own a PC"
```

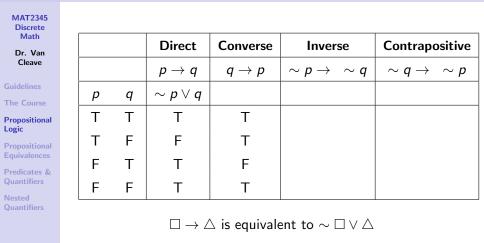
Direct Statement $(p \rightarrow q)$:

Converse:

Inverse:

Contrapositive:

Equivalent Conditionals



 $\sim \Box \lor \bigtriangleup ~\equiv~ \Box \to \bigtriangleup$

$$\Box \lor \bigtriangleup \equiv \sim \Box \to \bigtriangleup$$

Dr. Van Cleave

MAT2345 Discrete Math

Tricky Question

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers For the expression $p \lor q$, write each of the following in symbols:

Direct Statement:

Converse:

Inverse:

Contrapositive:

Alternate Conditional Forms

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifier

Common translations of $p \rightarrow q$

If p, then q	p is sufficient for q
If <i>p</i> , <i>q</i>	q is necessary for p
p implies q	q follows from p
p only if q	q if p
q unless $\sim p$	q when p

These translations do not in any way depend upon the truth value of $p \rightarrow q$.

Equivalent Expressions

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

"If you get home late, then you are grounded" \equiv

You are grounded if you get home late.

Getting home late is sufficient for you to get grounded.

Getting grounded is necessary when you get home late.

Getting home late implies that you are grounded.

Truth Tables for Compound Propositions

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifier The Truth Table of $(p \lor \neg q) \to (p \land q)$

p	q	$\neg q$	$p \lor \neg q$	$p \wedge q$	$(p \lor \neg q) ightarrow (p \land q)$
Т	Т				
Т	F				
F	Т				
F	F				

System Specifications

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers **Consistent** system specifications do not contain **conflicting** requirements that could be used to derive a **contradiction**.

When specifications are not consistent, there is no way to develop a system that satisfies all the specifications.

To determine consistency, first translate the specifications into logical expressions; then determine whether any of the specifications conflict with one another.

Example — Are They Consistent?

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifier System Specifications:

1 Whenever the system software is being upgraded, users cannot access the file system.

2 If users can access the file system then they can save new files.

3 If users cannot save new files, then the system software is not being upgraded.

Discrete Math	Translate into Logical Expressions:
Dr. Van Cleave	
Guidelines	ho =
The Course	
Propositional Logic	<i>q</i> =
Propositional Equivalences	r =
Predicates & Quantifiers	S1 =
Nested Quantifiers	
quantiners	<i>S</i> 2 =
	<i>S</i> 3 =

MAT2345

	Are the Specifications Consistent?
MAT2345 Discrete Math	Is there any truth assignment that makes ${\it S1} \wedge {\it S2} \wedge {\it S3}$ True?
Dr. Van Cleave	
Guidelines	
The Course	
Propositional Logic	
Propositional Equivalences	
Predicates & Quantifiers	
Nested Quantifiers	

Another Example

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

- 1 The system is in multiuser state if and only if it is operating normally.
- **2** If the system is operating normally, the kernel is functioning.
- **3** The kernel is not functioning or the system is in interrupt mode.
- 4 If the system is not in multiuser state, then it is in interrupt mode.
- **5** The system is not in interrupt mode.

Translate into Logical Expressions

MAT2345 Discrete Math	<i>p</i> =
Dr. Van Cleave	q =
Guidelines	<i>r</i> =
The Course	
Propositional Logic	s =
Propositional Equivalences	S1 =
Predicates & Quantifiers	<i>S</i> 2 =
Vested Quantifiers	<i>S</i> 3 =
	<i>S</i> 4 =
	<i>S</i> 5 =

	Are the Specifications Consistent?
MAT2345 Discrete Math	
Dr. Van Cleave	
Guidelines	
The Course	
Propositional Logic	
Propositional Equivalences	
Predicates & Quantifiers	
Nested Quantifiers	
	What indicates a system is inconsistent?

Logical and Bit Operations

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifiers

- bit = binary digit: smallest unit of storage in computer memory, has two possible values — true (1) and false (0).
- Boolean Variable: program unit of storage that can contain one of two values — either true or false, and can thus be represented by a bit.
- **Bit Operations**: correspond to logical connectives: $\land, ~\lor, ~\oplus, \neg$
- Bit String: a sequence of zero or more bits. The length of the string is the number of bits in it.

Bitwise OR, Bitwise AND, and Bitwise XOR can be applied to bit strings.

An Exercise

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier

0101	1101	0011	р	
1110	1011	0110	q	
			bitwise	OR
			bitwise	AND
			bitwise	XOR

1.2 Propositional Equivalences

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers **Contingency**: a proposition which is neither a **tautology** nor a **contradiction**.

p	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$		
		tautology	contradiction		
Т	F	Т	F		
F	Т	Т	F		

Logical Equivalence

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier **Logically Equivalent**: two compound propositions which always have the same truth value (given the same truth assignments to any Boolean Variables).

p	q	$p \wedge q$	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
Т	Т	Т	Т	F	F	F	F
Т	F	F	Т	F	F	Т	F
F	Т	F	Т	F	Т	F	F
F	F	F	F	Т	Т	Т	Т

Thus,
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

On Worksheet Provided

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Cours

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers Using the Truth Table provided, show:

 $p \wedge q$ is logically equivalent to $\neg [p \rightarrow (\neg q)]$

 $p \lor q$ is logically equivalent to $(\neg p) \rightarrow q$

 $p \lor (q \land r)$ is logically equivalent to $(p \lor q) \land (p \lor r)$

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers Write as a proposition:

If I go to Harry's or go to the country, I will not go shopping.

Begin by breaking the compound into separate propositions:
H =
C =
S =

Then write as a compound proposition using H, C, and S:

	Name that Term!
MAT2345 Discrete Math Dr. Van Cleave	What is a proposition which
Guidelines The Course Propositional Logic Propositional Equivalences Predicates & Quantifiers Nested	 is always true? is always false? is neither 1. nor 2.?
Quantifiers	

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

- Two propositions, p and q, are **logically equivalent** if $p \leftrightarrow q$ is a tautology.
- We write $p \Leftrightarrow q$

• Example:
$$(p
ightarrow q) \land (q
ightarrow p) \Leftrightarrow p \leftrightarrow q$$

To show a proposition is not a tautology, you may use an *abbreviated* truth table and

• try to find a *counter example* to *disprove* the assertion

search for a case where the proposition is false

Proving Logical Equivalence

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier Prove these expressions are logically equivalent: $(p
ightarrow q) \land (q
ightarrow p) \iff p \leftrightarrow q$

When would they **not** be equivalent?

Case 1. left side false, right side true... Subcase a. $p \rightarrow q$ is false Subcase b. $q \rightarrow p$ is false

Case 2. left side true, right side false... Subcase a. p = T, q = FSubcase b. p = F, q = T

There are no more possibilities, so the two propositions must be logically equivalent.

Note Tables 6, 7, & 8 in section 1.2 — these are **important** for simplifying propositions and proving logical equivalences.

The Porsche & The Tiger

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers A prisoner must make a choice between two doors: behind one is a beautiful red Porsche, and behind the other is a hungry tiger. Each door has a sign posted on it, but only one sign is true.

Door #1. In this room there is a Porsche and in the other room there is a tiger.

Door #2. In one of these rooms there is a Porsche
 and in one of these rooms there is a
 tiger.

With this information, the prisoner is able to choose the correct door... Which one is it?

	D ·
In	Review
	1.001000

MAT2345 Discrete Math	\sim p	negation of p	truth value is
Dr. Van Cleave			opposite of <i>p</i>
Guidelines The Course	$p \wedge q$	conjunction	true only when both <i>p</i> and <i>q</i> are true
Propositional Logic Propositional	$p \lor q$	disjunction	false only when both <i>p</i> and <i>q</i> are false
Equivalences Predicates & Quantifiers Nested Quantifiers	p ightarrow q	conditional	false only when <i>p</i> is true and <i>q</i> is false
	$p \leftrightarrow q$	biconditional	true only when <i>p</i> and <i>q</i> have the <i>same</i> truth value.

1.3 Predicates

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

- Propositional Function or Predicate: a generalization of a proposition which contains one or more variables.
- Predicates become propositions once every variable is **bound** by:
 - Assigning it a value from the Universe of Discourse, U, or
 - Quantifying it

Example 1

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifiers

- Let U = Z = {..., -2, -1, 0, 1, 2, ...}, the integers, and let P(x): x > 0 be a predicate.
 It has no truth value until the variable x is bound.
- Examples of propositions where x is assigned a value:
 P(-3)
 - P(0)
 P(3)

What is the truth value of each?

More Examples

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier

- $P(y) \lor \neg P(0)$ is **not** a proposition. The variable y has not been bound.
- Let R be the 3-variable predicate: R(x, y, z) : x + y = z

What is the truth of:

- R(2, -1, 5)
- *R*(3, 4, 7)
- $\blacksquare R(x,3,z)$

Quantifiers

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifier • **Quantifiers** are used to assert that a predicate

- is true for every value in the Universe of Discourse,
- is true for some value(s) in the Universe of Discourse, or
- is true for one and only one value in the Universe of Discourse
- The Universal quantification of P(x) is the proposition that P(x) is true for every x in the Universe of Discourse
- Universal quantification is written as: $\forall x \ P(x)$
- For example, let $U = \{1, 2, 3\}$. Then $\forall x \ P(x) \Leftrightarrow P(1) \land P(2) \land P(3)$.

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers The statement Every math student studies hard. can be expressed as:

 $\forall x P(x)$

if we let P(x) denote the statement x studies hard, and let $U = \{all \text{ math students}\}.$

We can also write this statement as: $\forall x (S(x) \rightarrow P(x))$

if we let S(x) denote the statement x is a math student, and P(x) and U are as before.

Existential Quantification

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Proposition Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

- Existential quantification asserts a proposition is true if and only if it is true for at least one value in the universe of discourse.
- The Existential quantification of P(x) is the proposition that P(x) is true for some x in the Universe of Discourse
- Existential quantification is written as: $\exists x \ P(x)$
- For example, let $U = \{1, 2, 3\}$. Then $\exists x \ P(x) \Leftrightarrow P(1) \lor P(2) \lor P(3)$.

Unique Existential Quantification

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifiers

- Unique Existential Quantification asserts a proposition is true for one and only one x ∈ U, and is written ∃ ! x P(x)
- Remember: a predicate is not a proposition until all variables have been bound either by quantification or assignment of a value.

Equivalences Involving Negation

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers

$$\neg \forall x \ P(x) \Leftrightarrow \exists x \ \neg P(x)$$

"P(x) is not true for all x" is logically equivalent to "there is some x for which P(x) is not true"

$$\neg \exists x \ P(x) \Leftrightarrow \forall x \ \neg P(x)$$

"There is no x for which P(x) is true" is logically equivalent to "P(x) is not true for every x"

- Distributing a negation operator across a quantifier changes a universal to an existential, and vice versa
- If there are multiple quantifiers, they are read from left to right

Nested Quantification Examples

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositiona Equivalences

Predicates & Quantifiers

Nested Quantifiers

Multiple quantifiers are read from left to right.

Let $U = \mathbb{R}$, the real numbers. Then consider P(x, y): xy = 0

Which of the following are TRUE?

 $\blacksquare \forall x \forall y P(x,y)$

- $\bullet \forall x \exists y P(x,y)$
- $\blacksquare \exists x \forall y P(x,y)$
- $\blacksquare \exists x \exists y P(x,y)$

Suppose $P(x, y) : \frac{x}{y} = 1 \dots$ now which are TRUE?

Conversions

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers Let $U = \{1, 2, 3\}$. Find an expression equivalent to:

$$\forall x \exists y P(x,y)$$

where the variables are bound by substitution instead of quantification.

We can expand from the inside out, or the outside in... Outside in, we get: $\exists y \ P(1,y) \land \exists y \ P(2,y) \land \exists y \ P(3,y) \Leftrightarrow$ $\begin{bmatrix} P(1,1) \lor P(1,2) \lor P(1,3) \end{bmatrix} \land$

 $[P(2,1) \lor P(2,2) \lor P(2,3)] \land \\[P(3,1) \lor P(3,2) \lor P(3,3)]$

Translating English To Symbols, I

MAT2345 Discrete Math

Dr. Van Cleave

- Guidelines
- The Cours
- Propositiona Logic
- Propositional Equivalences
- Predicates & Quantifiers

Nested Quantifiers

- Let $U = \{ \text{ all EIU students } \}$, and F(x) : x speaks French fluently J(x) : x knows Java
- Someone can speak French and knows Java $\exists x (F(x) \land J(x))$

2 Someone speaks French, but doesn't know Java

- 3 Everyone can either speak French or knows Java
- 4 No one speaks French or knows Java
- 5 If a student knows Java, they can speak French

Translating English to Symbols, II

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositiona Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers Let $U = \{ \text{ fleegles, snurds, thingamabobs } \}$, and F(x) : x is a fleegle S(x) : x is a snurd T(x) : x is a thingamabob1 Everything is a fleegle $\forall x F(x) \Leftrightarrow \neg \exists x \neg F(x)$ 2 Nothing is a snurd

3 All fleegles are snurds

4 Some fleegles are thingamabobs

5 No snurd is a thingamabob

6 If any fleegle is a snurd then it's also a thingamabob

Commutivity & Distribution of Quantifiers

MAT2345 Discrete Math

Dr. Van Cleave

Guidelines

The Course

Propositional Logic

Propositional Equivalences

Predicates & Quantifiers

Nested Quantifiers When all quantifiers are the same, they may be interchanged:

CORRECT : $\forall x \forall y P(x, y) \Leftrightarrow \forall y \forall x P(x, y)$ **WRONG** : $\forall x \exists y P(x, y) \Leftrightarrow \exists y \forall x P(x, y)$

■ A quantifier may be distributed over ∧ and ∨, but **not** over an implication:

CORRECT : $\forall x[P(x) \land Q(x)] \Leftrightarrow \forall xP(x) \land \forall xQ(x)$ **WRONG** : $\forall x[P(x) \rightarrow Q(x)] \Leftrightarrow [\forall xP(x) \rightarrow \forall xQ(x)]$