Mat 2345 Week 3-ish
Secs 1.6 - 1.7
Week 3
Proofs
Direct
Counter- example
Cases
Indirect
Induction
Existence
IFF

Student Responsibilities — Week 3

Mat 2345 Week 3-ish

- Secs 1.6 1.7
- Week 3
- Proofs
- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence
- IFF

- Reading: Textbook, Section 1.7
 - Assignments: Worksheets & more See web site
 - Attendance: Laboriously Encouraged

- Week 3 Overview
- 1.6 Introduction to Proofs, review
- 1.7 Proof Methods and Strategy

Mathematical Proofs

Mat 2345 Week 3-ish

- Secs 1.6 1.7
- Week 3
- Proofs
- Direct
- Counterexample
- Cases
- Indirec
- Inductio
- Existence
- IFF

- Proofs in mathematics are valid arguments that establish the truth of mathematical statements.
 - Argument : a sequence of statements that ends with a conclusion.
- Valid : the conclusion or final statement of the argument must follow from the truth of the preceding statements, or premises, of the argument.
- An argument is valid if and only if it is impossible for all the premises to be true and the conclusion to be false.

Formal Proofs

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

IFF

To prove an argument is valid or the conclusion follows logically from the hypotheses:

- Assume the hypotheses are true
- Use the rules of inference and logical equivalences to determine that the conclusion is true.

Methods of Proof

Mat 2345 Week 3-ish

- Secs 1.6 1.7
- Week 3

- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence

- **Trivial Proof**: if q is true, then $p \rightarrow q$ is true
 - **Vacuous Proof**: if one or more hypotheses are false
 - Direct Proof: assume hypotheses true, show conclusion true
 - Indirect Proof: assume conclusion false, show hypotheses is false
- **Proof** by **Contradiction**: assume conclusion false, derive contradiction (yielding $\neg q \rightarrow False$, so q must be true)
- Proof by Cases: break hypotheses into equivalent disjunctive implications, prove case by case

A Guide to Writing Proofs

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

IFF

Based on supplement to the text by Ron Morash, University of Michigan–Dearborn

> Deducing conclusions having the form: "For every x, if P(x), then Q(x)" $(\forall x[P(x) \rightarrow Q(x)])$

Direct proof

Indirect proof

Proof by contraposition

Proof by contradiction

Deriving conclusions of the form "q or r"

Proof by mathematical induction

 $\forall x [P(x) \rightarrow Q(x)]$

- Secs 1.6 1.7
- Week 3

Proofs

- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence
- IFF

- Many defining properties in math have the form $\forall x [P(x) \rightarrow Q(x)]$, representing the idea "All P's are Q's".
- Many math propositions that students are asked to prove have as their conclusion a statement involving a definition of this form.

For example,

or

"Prove that for all sets A and B, $A \subseteq A \cup B$ "

"Prove that for all primes p and q greater than 2, pq + 1 is not prime."

 $\forall x[P(x) \rightarrow Q(x)], \text{ Cont.}$

Secs 1.6 - 1.7

Week 3

- Proofs
- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence
- IFF

- Note that the desired conclusion in such propositions is a statement involving a definition.
- Further, many propositions have a hypothesis, a statement we are allowed to assume true, and whose assumed truth, presumably, will play a role in deriving the conclusion.

Direct Proof

- Mat 2345 Week 3-ish
- Secs 1.6 1.7
- Week 3
- Proofs
- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence

- Direct proof: an argument in which a proposition in its originally-stated form is proven
- Direct proofs of propositions with no hypothesis tends to be simpler than for those in the form ∀x, P(x) → Q(x).
- Usually, a definition is used to facilitate the proof.

Sets, a Quick Intro

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

- Set: an unordered collection or group of objects, which are said to be elements, or members of the set
- Subset: Let A and B be sets. Then $A \subseteq B \Leftrightarrow \forall x \ [x \in A \rightarrow x \in B]$
- Complement of A, denoted \overline{A} , is the set $\{x \mid \neg(x \in A)\} = \{x \mid x \notin A\}$

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existenc

IFF.

• Union of A and B, denoted $A \cup B$, is the set $\{x \mid x \in A \lor x \in B\}$

■ Intersection of *A* and *B*, denoted $A \cap B$, is the set $\{x \mid x \in A \land x \in B\}$

If the intersection is void, A and B are said to be **disjoint**

Direct Proof, Example 1

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

IFF

Theorem For all sets *A* and *B*, $A \subseteq A \cup B$

Discussion Let *A* and *B* be arbitrary sets, and let *x* be an arbitrary element of *A* (Assume $x \in A$). We must prove $x \in A \cup B$

- By **definition of union**, we must show $x \in A$ or $x \in B$
- Since we assumed $x \in A$, the desired conclusion, $x \in A$ or $x \in B$ follows immediately
- Thus, $x \in A \cup B$, and the proof is complete

Direct Proof, Example 2

Mat	2345
Week	3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

Theorem For all sets X and Y, $X \cap (Y \cup \overline{X}) \subseteq Y$

Discussion Let X and Y be arbitrary sets. To prove $X \cap (Y \cup \overline{X}) \subseteq Y$, let a be an arbitrarily chosen element of $X \cap (Y \cup \overline{X})$, and prove $a \in Y$

- By the assumption (and definition of intersection), $a \in X$ and $a \in Y \cup \overline{X}$
- From this, we know $a \in X$ AND either $a \in Y$ or $a \in \overline{X}$
- Thus, either $a \in Y$ or $a \notin X$
- But we also know $a \in X$, so $a \notin X$ is false
- Hence, we conclude $a \in Y$, and the proof is complete

Propositions With One Or More Hypotheses

The tools we can use:

Week 3

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

- the assumption(s) we're entitled to make at the outset, in setting up the proof
- assumed axioms and previously-proved theorems (if any)
- rules of inference from logic
- in addition, most propositions contain one or more hypotheses — statements which are assumed to be true (and will likely be used in the proof)

Direct Proof, Example 3

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

Theorem For all sets X, Y, and Z, **if** $X \subseteq Y$, **then** $X \cap Z \subseteq Y \cap Z$.

Discussion Let X and Y be sets, such that $X \subseteq Y$. To prove $X \cap Z \subseteq Y \cap Z$, assume $b \in X \cap Z$ and show $b \in Y \cap Z$. To do this, we'll have to prove that $b \in Y$ and $b \in Z$. Notice we are focusing on the **conclusion**.

- What do we know or assume is true? b ∈ X ∩ Z, which means (by definition of ∩) that b ∈ X and b ∈ Z − √
- Now we just have to prove $b \in Y$
- Since b ∈ X and X ⊆ Y, by definition of ⊆, we can conclude b ∈ Y √
- Thus, we have proven if $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$

Direct Proof, Example 4

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirec

Induction

Existence

IFF

Theorem Every non–constant linear function $f(x) = Mx + B, M \neq 0$, is one–to–one.

Discussion Let M be a nonzero real number. Let x_1 and x_2 be real numbers and assume that $f(x_1) = f(x_2)$. We must prove that $x_1 = x_2$ (since that is the definition of one-to-one).

- Since $f(x_1) = Mx_1 + B$ and $f(x_2) = Mx_2 + B$, we have $Mx_1 + B = Mx_2 + B$
- By a rule of elementary algebra, if $Mx_1 + B = Mx_2 + B$, then $Mx_1 = Mx_2$
- Since Mx₁ = Mx₂ and M ≠ 0 (by hypothesis), we conclude by another rule of elementary algebra that x₁ = x₂, as desired.

Disproving False Propositions Having Conclusions of the Form $\forall x [P(x) \rightarrow Q(x)]$

- Mat 2345 Week 3-ish
- Secs 1.6 1.7
- Week 3
- Proofs
- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence
- IFF

- Sometimes we are faced with a proposition that must either be "proved or disproved," and are not told in advance if the proposition is true.
- If it is false, then it will be impossible to write a correct proof of the proposition
- Trying to do so may provide insight, but will not lead to a valid proof.

Example 5

Prove or disprove:

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirec

Induction

Existenc

IFF

Theorem For all sets *X*, *Y*, and *Z*, **if** $X \cap Z \subseteq Y \cap Z$, **then** $X \subseteq Y$.

Discussion Suppose we attempt to prove this proposition. Let X, Y, and Z be arbitrary sets such that $X \cap Z \subseteq Y \cap Z$. To prove $X \subseteq Y$, let $w \in X$; we must prove $w \in Y$.

At this point, we run into a problem: $w \in X$ doesn't mean $w \in X \cap Z$, unless we know $w \in Z$ (which we do not). So either there is another proof method, or the proposition is false.

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

IFF

Finding a Counterexample — a specific example that contradicts the truth of the proposition.

- First, we must determine the negation of the proposition
- The negation of $\forall x[P(x) \rightarrow Q(x)]$ is $\exists x[P(x) \land \neg Q(x)]$
- So the negation of the proposition is: "there exists sets X, Y, and Z such that $X \cap Z \subseteq Y \cap Z$ but X is not a subset of Y."
- Consider: $X = \{4, 7\}$. $Y = \{7, 9\}$, and $Z = \{7, 9, 10\}$. Then $X \cap Z = \{7\}$, $Y \cap Z = \{7, 9\}$, so $X \cap Z \subseteq Y \cap Z$. However, $X \not\subseteq Y$.

Hence we have a counterexample; the proposition is false.

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

- Note: a single counterexample to a general proposition is sufficient to prove that proposition false.
- On the other hand, if we were to try to prove a general proposition true by example, we would have to show it holds for all elements in the domain – impossible when the domain is infinite.
- In that case, no number of specific cases that affirm a proposition are sufficient to establish its truth in general.
- A general proof is required for a general case with an infinite domain.

Tactic of Division into Cases

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

- This method is used as the propositions we wish to prove become more complex.
- It may be that we must consider p ∨ ¬p, which breaks down into two cases: p and ¬p
- Or, there may be a finite number of possibilities to consider, and we may have more than two cases. For example, x < 0, x = 0, and x > 0.

Example 7, Proof by Cases

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

Theorem For all sets A and B, $(A \cap B) \cup (A \cap \overline{B}) \subseteq A$

Discussion Let A and B be arbitrary sets. To prove the proposition, assume $x \in (A \cap B) \cup (A \cap \overline{B})$ and prove $x \in A$.

- By definition of \cup , we know $x \in (A \cap B)$ or $x \in (A \cap \overline{B})$.
- That is, either $(x \in A \land x \in B)$ or $(x \in A \land x \in \overline{B})$
- We don't know which is the case, but we do know one of them must be true.

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Inductio

Existence

IFF

 Now the argument can be divided into two exhaustive cases:
Case I x ∈ (A ∩ B) ≡ x ∈ A ∧ x ∈ B Then, in particular, x ∈ A (by definition of ∩ and ∧), so the conclusion holds.

Case II $x \in (A \cap \overline{B}) \equiv x \in A \land x \in \overline{B}$ Then again, $x \in A$ (by definition of \cap and \land), so the conclusion holds.

■ Under either of the only two possible cases, we have *x* ∈ *A*, the desired conclusion.

Example 8

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

IFF

Theorem For all sets A and B, $A \subseteq (A \cap B) \cup (A \cap \overline{B})$

Discussion Let A and B be arbitrary sets. To prove the proposition, assume $x \in A$ and prove $x \in (A \cap B) \cup (A \cap \overline{B})$. To do this, we must prove either $x \in (A \cap B)$ or $(x \in A \cap \overline{B})$

- Thus, either $(x \in A \text{ and } x \in B)$, or else $(x \in A \text{ and } x \in \overline{B})$.
- Since we assumed $x \in A$, we need only consider whether x is in B or \overline{B} .

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Existenc

IFF

Now the argument can be divided into two exhaustive cases:

Case I $x \in B$ Then, since $x \in A$, we have $x \in A$ and $x \in B$, or $x \in (A \cap B)$

Case II $x \in \overline{B}$ Then since $x \in A$, we have $x \in A$ and $x \in \overline{B}$, or $x \in (A \cap \overline{B})$

■ Thus we have shown that x ∈ (A ∩ B) or x ∈ (A ∩ B), so x must be in their union.

Indirect Proof

Mat 2345 Week 3-ish

- Secs 1.6 1.7
- Week 3
- Proofs
- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence
- IFF

- Sometimes it's convenient, or even necessary, to prove a form of a proposition that is different from the original, but logically equivalent to it.
 - Whenever we write a proof in such a form, it's called an indirect proof.
 - Three common forms of indirect proof, based on three logical equivalences of pairs of propositions:
 - 1. Proof by Contraposition: $\neg q \rightarrow \neg p$ is equivalent to $p \rightarrow q$
 - 2. Proof by Contradiction: $\neg p \rightarrow (q \land \neg q)$ is equivalent to p
 - 3. For conclusions having the form "either q or r: $(p \land \neg q) \rightarrow r$ is equivalent to $p \rightarrow (q \lor r)$ "

Proof by Contraposition

Mat 2345 Week 3-ish

- Secs 1.6 1.7
- Week 3
- Proofs
- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence
- IFF

- **Proof by Contraposition**: $\neg q \rightarrow \neg p$ is equivalent to $p \rightarrow q$
 - Sometimes it's difficult to see how to prove a proposition of the form ∀x[P(x) → Q(x)] by starting with the assumption that P(x) is true.
 - So, what can we do if we cannot see how to deduce the conclusion, Q(x), from the hypotheses?
 - In some proofs, assuming ¬Q(x), the negation of the conclusion, provides a better match with known facts and the other given hypotheses (if any), and may lead more readily to ¬P(x), the negation of the original assumption.

Proof by Contradiction

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Inductio

Existence

- **Proof by Contradiction**: $\neg p \rightarrow (q \land \neg q)$ is equivalent to p
- In this method, we may prove a conclusion p by showing that the denial of p leads to a contradiction.
- Proof by contraposition is actually a form of proof by contradiction: in a proof of p → q, we assume the truth of p and then use ¬q to derive ¬p, we obtain the contradiction p ∧ ¬p.
- Another instance in which proof by contradiction is the standard approach is any proof of a theorem in set theory in which the conclusion asserts that some set equals the empty set.

Deriving Conclusions of the Form $q \vee r$

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Inductio

Existence

- For conclusions having the form "either q or r: (p ∧ ¬q) → r is equivalent to p → (q ∨ r)"
- Strategy: assume the negation of all but one of the alternative conclusions and, on that basis, try to prove that the remaining conclusion must be true.
- This equivalence becomes relevant when we must derive a conclusion involving alternatives q ∨ r

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Inductio

Existenc

- There may be no circumstance under which we can be sure which of the alternatives is true — only that at least one of them must be true under every circumstance in which the hypothesis is true.
- Because of this, we are unable to determine whether to set up a direct proof based on the conclusion q or on the conclusion r.
- The solution is to replace the original problem by the problem of showing that r follows p ∧ ¬q (or equivalently, that q follows from p ∧ ¬r)

$$(p \land \neg q) \rightarrow r$$

Theorem For all real numbers x and y, if xy = 0, then x = 0 or y = 0.

Discussion Let x and y be real numbers such that xy = 0. Now we have a dilemma: there is no evident way of proceeding toward the conclusion — that one or the other of x or y must be 0.

Proof

- Thus, we make the additional assumption that x ≠ 0 and show that therefore y must be 0.
- Since $x \neq 0$, its reciprocal, $\frac{1}{x}$, must exist.

Then
$$y = 1y = [\frac{1}{x}x]y = \frac{1}{x}xy = \frac{1}{x}0 = 0$$
, so $y = 0$ as desired.

Mat 2345 Week 3-ish Secs 1.6 – 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

Another Such Proof

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Existenc

IFE

Theorem For all sets A and B, $A \subseteq B \cup (A \cap \overline{B})$.

Discussion Let A and B be arbitrary sets, and assume that $x \in A$. We need to prove that $x \in B \cup (A \cap \overline{B})$; that is, either $x \in B$ or $x \in A \cap \overline{B}$.

- Assume $x \notin B$, and we will show that x must then be in $A \cap \overline{B}$, or equivalently, $x \in A \land x \in \overline{B}$.
- We already know that $x \in A$ by our initial assumption.
- Since $x \notin B$, we also know $x \in \overline{B}$.
- Thus, $x \in A \land x \in \overline{B}$, which we wished to show.

Proof by Mathematical Induction

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence IFF

- This method will be studied in depth later in the course.
- It is used to prove propositions of the form ∀nP(n), where the universe of discourse is the set of positive integers.

Examples:
$$\forall n \ge 1, 1+2+\dots+n = \frac{n(n+1)}{2}$$
 or $\forall n \ge 1, n \le 2^n$.

The big picture is that we first prove P(1) true, then show we can prove P(k+1) is true if P(k) is true — sort of a bootstrapping process. Once we have a basis and a way to leverage from P(i) to P(i+1), we have an algorithm or method for showing all the P(n) are true.

	Existence Proofs — Constructive
Mat 2345 Week 3-ish	
Secs 1.6 - 1.7	
Week 3	We wish to establish the truth of $\exists x P(x)$.
Proofs	
Direct	Constructive existence proof:
Counter- example	•
Cases	Establish P(c) is true for some c in the universe
Indirect	
Induction	• Then $\exists x P(x)$ is true by Existential Generalization (EG).
Existence	
	note: c may be specific and unique, or may be arbitrary.

	Example 1
Mat 2345 Week 3-ish	
Secs 1.6 - 1.7	
Week 3	Theorem . There exists an integer solution to the equation
Proofs	Theorem. There exists an integer solution to the equation
Direct	$x^2 + y^2 = z^2$
Counter- example	
Cases	
Indirect	
Induction	Proof:
Existence	
IFF	Choose $x = 3$, $y = 4$, and $z = 5$.

Example 2

Mat 2345 Week 3-ish

- Secs 1.6 1.7
- Week 3
- Proofs
- Direct
- Counterexample
- Cases
- Indirect
- Induction
- Existence

Theorem. There exists a **bijection** from A = [0, 1] to B = [0, 2]

- A bijection is a one-to-one, onto function mapping elements of one set to another.
- Let $a, a_1, a_2 \in A$ and $b \in B$.
- Then 1-1 (injection) means if $f(a_1) = b = f(a_2)$, then $a_1 = a_2$.
- Onto (surjection) means ∀b ∈ B ∃a ∈ A [f(a) = b], i.e., b has a pre-image in A, f⁻¹(b) = a ∈ A.

Proof:

We build two injections and conclude there must be a bijection with out ever exhibiting the bijection.

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

- Let f be the identity map from A to B.
- Then f is an injection (and we conclude that $|A| \leq |B|$).
- Define the function g from B to A as $g(x) = \frac{x}{4}$.
- Then g is an injection.
- Therefore, $|B| \leq |A|$.
- We now apply a theorem which states that: if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.
- Hence, there must be a bijection from A to B.
- Note: we could have chosen g(x) = ^x/₂ and obtained a bijection directly.

Q.E.D.

Existence Proofs — Non-constructive

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

Assume no c exists which makes P(c) true, and derive a contradiction.

Theorem There exists an irrational number.

- Assume there doesn't exist an irrational number.
- Then all numbers must be rational.
- Then the set of all numbers must be countable.
- Then the real numbers in the interval [0,1] is a countable set.
- But this set is **not countable**.
- Hence, we have a contradiction the set is both countable and not countable.
- Therefore, there must exist an irrational number. Q.E.D. (And we didn't even have to produce it!)

Biconditional Proofs

Mat 2345 Week 3-ish

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

IFF

Recall that $P \leftrightarrow Q$ is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$

When proving a biconditional, we must prove both P o Q and Q o P

Theorem For the universe of all integers, x is even if and only if x^2 is even.

Discussion The quantified assertion is: $\forall x[(x \text{ is even}) \leftrightarrow (x^2 \text{ is even})]$ Thus, $\forall x[(x \text{ is even}) \rightarrow (x^2 \text{ is even})]$ and $\forall x[(x^2 \text{ is even}) \rightarrow (x \text{ is even})]$ Assume x is arbitrary.

Proof

Case I Show $\forall x[(x \text{ is even}) \rightarrow (x^2 \text{ is even})]$ Case II Show $\forall x[(x^2 \text{ is even}) \rightarrow (x \text{ is even})]$

Secs 1.6 - 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Induction

Existence

- Case I. Show if x is even, then x^2 is even using a direct proof.
 - If x is even, then x = 2k for some integer k.
 - Hence, x² = (2k)² = 4k² = 2(2k²), which is even since it is an integer which is divisible by 2.
 - This completes the proof of Case I.

Mat 2345 Week 3-ish Secs 1.6 – 1.7

Week 3

Proofs

Direct

Counterexample

Cases

Indirect

Inductio

Existence

IFF

Case II. Show that if x^2 is even, then x must be even — using an indirect proof.

• Assume x is not even, and show x^2 is not even.

If x is not even, then it must be odd.

So,
$$x = 2k + 1$$
 for some k .

- Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, which is odd and therefore not even.
- This completes the proof of Case II.

Thus we have shown that x is even IFF x^2 is even. Since x was arbitrary, the result follows by UG.