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Student Responsibilities — Week 3

Reading: Textbook, Section 1.7

Assignments: Worksheets & more — See web site

Attendance: Laboriously Encouraged

Week 3 Overview

1.6 Introduction to Proofs, review

1.7 Proof Methods and Strategy
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Mathematical Proofs

Proofs in mathematics are valid arguments that establish
the truth of mathematical statements.

Argument : a sequence of statements that ends with a
conclusion.

Valid : the conclusion or final statement of the argument
must follow from the truth of the preceding statements, or
premises, of the argument.

An argument is valid if and only if it is impossible for all the
premises to be true and the conclusion to be false.
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Formal Proofs

To prove an argument is valid or the conclusion follows
logically from the hypotheses:

Assume the hypotheses are true

Use the rules of inference and logical equivalences to
determine that the conclusion is true.
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Methods of Proof

Trivial Proof: if q is true, then p → q is true

Vacuous Proof: if one or more hypotheses are false

Direct Proof: assume hypotheses true, show conclusion true

Indirect Proof: assume conclusion false, show hypotheses is
false

Proof by Contradiction: assume conclusion false, derive
contradiction (yielding ¬q → False, so q must be true)

Proof by Cases: break hypotheses into equivalent
disjunctive implications, prove case by case
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A Guide to Writing Proofs

Based on supplement to the text by
Ron Morash, University of Michigan–Dearborn

Deducing conclusions having the form:
“For every x , if P(x), then Q(x)”

(∀x [P(x)→ Q(x)])

Direct proof

Indirect proof

Proof by contraposition

Proof by contradiction

Deriving conclusions of the form “q or r”

Proof by mathematical induction
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∀x [P(x)→ Q(x)]

Many defining properties in math have the form
∀x [P(x)→ Q(x)], representing the idea “All P’s are Q’s”.

Many math propositions that students are asked to prove
have as their conclusion a statement involving a definition of
this form.

For example,

“Prove that for all sets A and B, A ⊆ A ∪ B”
or

“Prove that for all primes p and q greater than 2,
pq + 1 is not prime.”
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∀x [P(x)→ Q(x)], Cont.

Note that the desired conclusion in such propositions is a
statement involving a definition.

Further, many propositions have a hypothesis, a statement
we are allowed to assume true, and whose assumed truth,
presumably, will play a role in deriving the conclusion.
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Direct Proof

Direct proof: an argument in which a proposition in its
originally-stated form is proven

Direct proofs of propositions with no hypothesis tends to be
simpler than for those in the form ∀x ,P(x)→ Q(x).

Usually, a definition is used to facilitate the proof.
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Sets, a Quick Intro

Set: an unordered collection or group of objects, which are
said to be elements, or members of the set

Subset: Let A and B be sets. Then
A ⊆ B ⇔ ∀x [ x ∈ A → x ∈ B ]

Complement of A, denoted A, is the set

{x | ¬(x ∈ A)} = {x | x 6∈ A}



Mat 2345
Week 3-ish

Secs 1.6 – 1.7

Week 3

Proofs

Direct

Counter–
example

Cases

Indirect

Induction

Existence

IFF

Union of A and B, denoted A ∪ B, is the set

{x | x ∈ A ∨ x ∈ B}

Intersection of A and B, denoted A ∩ B, is the set

{x | x ∈ A ∧ x ∈ B}

If the intersection is void, A and B are said to be disjoint
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Direct Proof, Example 1

Theorem For all sets A and B, A ⊆ A ∪ B

Discussion Let A and B be arbitrary sets, and let x be an
arbitrary element of A (Assume x ∈ A). We must prove
x ∈ A ∪ B

Proof

By definition of union, we must show x ∈ A or x ∈ B

Since we assumed x ∈ A, the desired conclusion, x ∈ A or
x ∈ B follows immediately

Thus, x ∈ A ∪ B, and the proof is complete
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Direct Proof, Example 2

Theorem For all sets X and Y , X ∩ (Y ∪ X ) ⊆ Y

Discussion Let X and Y be arbitrary sets. To prove
X ∩ (Y ∪ X ) ⊆ Y , let a be an arbitrarily chosen element of
X ∩ (Y ∪ X ), and prove a ∈ Y

Proof

By the assumption (and definition of intersection), a ∈ X
and a ∈ Y ∪ X

From this, we know a ∈ X AND either a ∈ Y or a ∈ X

Thus, either a ∈ Y or a 6∈ X

But we also know a ∈ X , so a 6∈ X is false

Hence, we conclude a ∈ Y , and the proof is complete
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Propositions With One Or More Hypotheses

The tools we can use:

the assumption(s) we’re entitled to make at the outset, in
setting up the proof

assumed axioms and previously–proved theorems (if any)

rules of inference from logic

in addition, most propositions contain one or more
hypotheses — statements which are assumed to be true
(and will likely be used in the proof)
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Direct Proof, Example 3

Theorem For all sets X , Y , and Z , if X ⊆ Y , then
X ∩ Z ⊆ Y ∩ Z .

Discussion Let X and Y be sets, such that X ⊆ Y . To prove
X ∩ Z ⊆ Y ∩ Z , assume b ∈ X ∩ Z and show b ∈ Y ∩ Z . To
do this, we’ll have to prove that b ∈ Y and b ∈ Z . Notice we
are focusing on the conclusion.

Proof

What do we know or assume is true? b ∈ X ∩ Z , which
means (by definition of ∩) that b ∈ X and b ∈ Z —

√

Now we just have to prove b ∈ Y
Since b ∈ X and X ⊆ Y , by definition of ⊆, we can
conclude b ∈ Y —

√

Thus, we have proven if X ⊆ Y , then X ∩ Z ⊆ Y ∩ Z
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Direct Proof, Example 4

Theorem Every non–constant linear function
f (x) = Mx + B,M 6= 0, is one–to–one.

Discussion Let M be a nonzero real number. Let x1 and x2 be
real numbers and assume that f (x1) = f (x2). We must prove
that x1 = x2 (since that is the definition of one–to–one).

Proof

Since f (x1) = Mx1 + B and f (x2) = Mx2 + B, we have
Mx1 + B = Mx2 + B

By a rule of elementary algebra, if Mx1 + B = Mx2 + B,
then Mx1 = Mx2

Since Mx1 = Mx2 and M 6= 0 (by hypothesis), we conclude
by another rule of elementary algebra that x1 = x2, as
desired.
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Disproving False Propositions
Having Conclusions of the Form ∀x [P(x)→ Q(x)]

Sometimes we are faced with a proposition that must either
be “proved or disproved,” and are not told in advance if the
proposition is true.

If it is false, then it will be impossible to write a correct
proof of the proposition

Trying to do so may provide insight, but will not lead to a
valid proof.
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Example 5

Prove or disprove:

Theorem For all sets X , Y , and Z , if X ∩ Z ⊆ Y ∩ Z , then
X ⊆ Y .

Discussion Suppose we attempt to prove this proposition. Let
X , Y , and Z be arbitrary sets such that X ∩ Z ⊆ Y ∩ Z . To
prove X ⊆ Y , let w ∈ X ; we must prove w ∈ Y .

At this point, we run into a problem: w ∈ X doesn’t mean
w ∈ X ∩ Z , unless we know w ∈ Z (which we do not). So
either there is another proof method, or the proposition is false.
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Finding a Counterexample — a specific example that
contradicts the truth of the proposition.

First, we must determine the negation of the proposition

The negation of ∀x [P(x)→ Q(x)] is ∃x [P(x) ∧ ¬Q(x)]

So the negation of the proposition is: “there exists sets X ,
Y , and Z such that X ∩ Z ⊆ Y ∩ Z but X is not a subset of
Y .”

Consider: X = {4, 7}. Y = {7, 9}, and Z = {7, 9, 10}.
Then X ∩ Z = {7}, Y ∩ Z = {7, 9}, so X ∩ Z ⊆ Y ∩ Z .
However, X 6⊆ Y .

Hence we have a counterexample; the proposition is false.
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Note: a single counterexample to a general proposition is
sufficient to prove that proposition false.

On the other hand, if we were to try to prove a general
proposition true by example, we would have to show it
holds for all elements in the domain – impossible when the
domain is infinite.

In that case, no number of specific cases that affirm a
proposition are sufficient to establish its truth in general.

A general proof is required for a general case with an infinite
domain.
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Tactic of Division into Cases

This method is used as the propositions we wish to prove
become more complex.

It may be that we must consider p ∨ ¬p, which breaks down
into two cases: p and ¬p

Or, there may be a finite number of possibilities to consider,
and we may have more than two cases. For example,
x < 0, x = 0, and x > 0.



Mat 2345
Week 3-ish

Secs 1.6 – 1.7

Week 3

Proofs

Direct

Counter–
example

Cases

Indirect

Induction

Existence

IFF

Example 7, Proof by Cases

Theorem For all sets A and B, (A ∩ B) ∪ (A ∩ B) ⊆ A

Discussion Let A and B be arbitrary sets. To prove the
proposition, assume x ∈ (A ∩ B) ∪ (A ∩ B) and prove x ∈ A.

Proof

By definition of ∪, we know x ∈ (A ∩ B) or x ∈ (A ∩ B).

That is, either (x ∈ A ∧ x ∈ B) or (x ∈ A ∧ x ∈ B)

We don’t know which is the case, but we do know one of
them must be true.
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Now the argument can be divided into two exhaustive cases:

Case I x ∈ (A ∩ B) ≡ x ∈ A ∧ x ∈ B
Then, in particular, x ∈ A (by definition of ∩ and ∧), so the
conclusion holds.

Case II x ∈ (A ∩ B) ≡ x ∈ A ∧ x ∈ B
Then again, x ∈ A (by definition of ∩ and ∧), so the
conclusion holds.

Under either of the only two possible cases, we have x ∈ A,
the desired conclusion.
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Example 8

Theorem For all sets A and B, A ⊆ (A ∩ B) ∪ (A ∩ B)

Discussion Let A and B be arbitrary sets. To prove the
proposition, assume x ∈ A and prove x ∈ (A ∩ B) ∪ (A ∩ B).
To do this, we must prove either x ∈ (A ∩ B) or (x ∈ A ∩ B)

Proof

Thus, either (x ∈ A and x ∈ B), or else (x ∈ A and x ∈ B).

Since we assumed x ∈ A, we need only consider whether x is
in B or B.
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Now the argument can be divided into two exhaustive cases:

Case I x ∈ B
Then, since x ∈ A, we have x ∈ A and x ∈ B, or x ∈ (A ∩ B)

Case II x ∈ B
Then since x ∈ A, we have x ∈ A and x ∈ B, or x ∈ (A ∩ B)

Thus we have shown that x ∈ (A ∩ B) or x ∈ (A ∩ B), so x
must be in their union.
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Indirect Proof

Sometimes it’s convenient, or even necessary, to prove a
form of a proposition that is different from the original, but
logically equivalent to it.

Whenever we write a proof in such a form, it’s called an
indirect proof.

Three common forms of indirect proof, based on three
logical equivalences of pairs of propositions:

1. Proof by Contraposition: ¬q → ¬p is equivalent to p → q

2. Proof by Contradiction: ¬p → (q ∧ ¬q) is equivalent to p

3. For conclusions having the form “either q or r :
(p ∧ ¬q)→ r is equivalent to p → (q ∨ r)”
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Proof by Contraposition

Proof by Contraposition: ¬q → ¬p is equivalent to p → q

Sometimes it’s difficult to see how to prove a proposition of
the form ∀x [P(x)→ Q(x)] by starting with the assumption
that P(x) is true.

So, what can we do if we cannot see how to deduce the
conclusion, Q(x), from the hypotheses?

In some proofs, assuming ¬Q(x), the negation of the
conclusion, provides a better match with known facts and
the other given hypotheses (if any), and may lead more
readily to ¬P(x), the negation of the original assumption.
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Proof by Contradiction

Proof by Contradiction: ¬p → (q ∧ ¬q) is equivalent to p

In this method, we may prove a conclusion p by showing
that the denial of p leads to a contradiction.

Proof by contraposition is actually a form of proof by
contradiction: in a proof of p → q, we assume the truth of p
and then use ¬q to derive ¬p, we obtain the contradiction
p ∧ ¬p.

Another instance in which proof by contradiction is the
standard approach is any proof of a theorem in set theory in
which the conclusion asserts that some set equals the empty
set.



Mat 2345
Week 3-ish

Secs 1.6 – 1.7

Week 3

Proofs

Direct

Counter–
example

Cases

Indirect

Induction

Existence

IFF

Deriving Conclusions of the Form q ∨ r

For conclusions having the form “either q or r :
(p ∧ ¬q)→ r is equivalent to p → (q ∨ r)”

Strategy: assume the negation of all but one of the
alternative conclusions and, on that basis, try to prove that
the remaining conclusion must be true.

This equivalence becomes relevant when we must derive a
conclusion involving alternatives — q ∨ r
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There may be no circumstance under which we can be sure
which of the alternatives is true — only that at least one of
them must be true under every circumstance in which the
hypothesis is true.

Because of this, we are unable to determine whether to set
up a direct proof based on the conclusion q or on the
conclusion r .

The solution is to replace the original problem by the
problem of showing that r follows p ∧ ¬q (or equivalently,
that q follows from p ∧ ¬r)
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(p ∧ ¬q)→ r

Theorem For all real numbers x and y , if xy = 0, then x = 0
or y = 0.

Discussion Let x and y be real numbers such that xy = 0.
Now we have a dilemma: there is no evident way of proceeding
toward the conclusion — that one or the other of x or y must
be 0.

Proof

Thus, we make the additional assumption that x 6= 0 and
show that therefore y must be 0.

Since x 6= 0, its reciprocal, 1
x , must exist.

Then y = 1y = [ 1x x ]y = 1
x xy = 1

x 0 = 0, so y = 0 as desired.
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Another Such Proof

Theorem For all sets A and B, A ⊆ B ∪ (A ∩ B).

Discussion Let A and B be arbitrary sets, and assume that
x ∈ A. We need to prove that x ∈ B ∪ (A ∩ B); that is, either
x ∈ B or x ∈ A ∩ B.

Proof

Assume x 6∈ B, and we will show that x must then be in
A ∩ B, or equivalently, x ∈ A ∧ x ∈ B.

We already know that x ∈ A by our initial assumption.

Since x 6∈ B, we also know x ∈ B.

Thus, x ∈ A ∧ x ∈ B, which we wished to show.
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Proof by Mathematical Induction

This method will be studied in depth later in the course.

It is used to prove propositions of the form ∀nP(n), where
the universe of discourse is the set of positive integers.

Examples: ∀n ≥ 1, 1 + 2 + · · ·+ n = n(n+1)
2 or

∀n ≥ 1, n ≤ 2n.

The big picture is that we first prove P(1) true, then show
we can prove P(k + 1) is true if P(k) is true — sort of a
bootstrapping process. Once we have a basis and a way to
leverage from P(i) to P(i + 1), we have an algorithm or
method for showing all the P(n) are true.
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Existence Proofs — Constructive

We wish to establish the truth of ∃xP(x).

Constructive existence proof:

Establish P(c) is true for some c in the universe

Then ∃xP(x) is true by Existential Generalization (EG).

note: c may be specific and unique, or may be arbitrary.
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Example 1

Theorem. There exists an integer solution to the equation

x2 + y2 = z2

Proof:

Choose x = 3, y = 4, and z = 5.
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Example 2

Theorem. There exists a bijection from A = [0, 1] to
B = [0, 2]

A bijection is a one-to-one, onto function mapping elements
of one set to another.

Let a, a1, a2 ∈ A and b ∈ B.

Then 1–1 (injection) means if f (a1) = b = f (a2), then
a1 = a2.

Onto (surjection) means ∀b ∈ B ∃a ∈ A [f (a) = b], i.e., b
has a pre–image in A, f −1(b) = a ∈ A.

Proof:

We build two injections and conclude there must be a bijection
with out ever exhibiting the bijection.
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Let f be the identity map from A to B.

Then f is an injection (and we conclude that |A| ≤ |B|).

Define the function g from B to A as g(x) = x
4 .

Then g is an injection.

Therefore, |B| ≤ |A|.

We now apply a theorem which states that:

if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Hence, there must be a bijection from A to B.

Note: we could have chosen g(x) = x
2 and obtained a

bijection directly.

Q.E.D.
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Existence Proofs — Non-constructive

Assume no c exists which makes P(c) true, and derive a
contradiction.

Theorem There exists an irrational number.

Proof

Assume there doesn’t exist an irrational number.

Then all numbers must be rational.

Then the set of all numbers must be countable.

Then the real numbers in the interval [0, 1] is a countable
set.

But this set is not countable.

Hence, we have a contradiction — the set is both countable
and not countable.

Therefore, there must exist an irrational number. Q.E.D.
(And we didn’t even have to produce it!)
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Biconditional Proofs

Recall that P ↔ Q is equivalent to (P → Q) ∧ (Q → P)

When proving a biconditional, we must prove both P → Q and
Q → P

Theorem For the universe of all integers, x is even if and only
if x2 is even.

Discussion The quantified assertion is:
∀x [(x is even)↔ (x2 is even)]

Thus, ∀x [(x is even)→ (x2 is even)] and
∀x [(x2 is even)→ (x is even)]

Assume x is arbitrary.

Proof

Case I Show ∀x [(x is even)→ (x2 is even)]

Case II Show ∀x [(x2 is even)→ (x is even)]
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Case I. Show if x is even, then x2 is even — using a direct
proof.

If x is even, then x = 2k for some integer k.

Hence, x2 = (2k)2 = 4k2 = 2(2k2), which is even since it
is an integer which is divisible by 2.

This completes the proof of Case I.
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Case II. Show that if x2 is even, then x must be even — using
an indirect proof.

Assume x is not even, and show x2 is not even.

If x is not even, then it must be odd.

So, x = 2k + 1 for some k .

Then, x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,
which is odd and therefore not even.

This completes the proof of Case II.

Thus we have shown that x is even IFF x2 is even. Since x was
arbitrary, the result follows by UG.
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