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Student Responsibilities — Week 3

Mat 2345
Week 3-ish

Secs 1.6 - 1.7 m Reading: Textbook, Section 1.7
Week 3

m Assignments: Worksheets & more — See web site

m Attendance: Laboriously Encouraged

Week 3 Overview

m 1.6 Introduction to Proofs, review

m 1.7 Proof Methods and Strategy



Mathematical Proofs

Mat 2345
Week 3-ish

Secs 1.6 - 1.7 m Proofs in mathematics are valid arguments that establish
the truth of mathematical statements.

Proofs

m Argument : a sequence of statements that ends with a
conclusion.

m Valid : the conclusion or final statement of the argument
must follow from the truth of the preceding statements, or
premises, of the argument.

m An argument is valid if and only if it is impossible for all the
premises to be true and the conclusion to be false.



Formal Proofs
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Proofs To prove an argument is valid or the conclusion follows
logically from the hypotheses:

m Assume the hypotheses are true

m Use the rules of inference and logical equivalences to
determine that the conclusion is true.



Methods of Proof
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SecLEL m Trivial Proof: if g is true, then p — q is true

m Vacuous Proof: if one or more hypotheses are false

Proofs

m Direct Proof: assume hypotheses true, show conclusion true

m Indirect Proof: assume conclusion false, show hypotheses is
false

m Proof by Contradiction: assume conclusion false, derive
contradiction (yielding —qg — False, so g must be true)

m Proof by Cases: break hypotheses into equivalent
disjunctive implications, prove case by case
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Proofs

A Guide to Writing Proofs

Based on supplement to the text by
Ron Morash, University of Michigan—Dearborn

Deducing conclusions having the form:
“For every x, if P(x), then Q(x)"
(Vx[P(x) = Q(x)])

m Direct proof

m Indirect proof

m Proof by contraposition
m Proof by contradiction

m Deriving conclusions of the form “g or r"

m Proof by mathematical induction



Vx[P(x) = Q(x)]
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Ses10-1T g Many defining properties in math have the form

Vx[P(x) = Q(x)], representing the idea "All P's are Q's".

Proofs

m Many math propositions that students are asked to prove
have as their conclusion a statement involving a definition of
this form.

For example,

“Prove that for all sets Aand B, AC AU B”
or

“Prove that for all primes p and g greater than 2,
pq + 1 is not prime.”



Vx[P(x) — Q(x)], Cont.
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Proofs m Note that the desired conclusion in such propositions is a
statement involving a definition.

m Further, many propositions have a hypothesis, a statement
we are allowed to assume true, and whose assumed truth,
presumably, will play a role in deriving the conclusion.



Direct Proof
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Proofs m Direct proof: an argument in which a proposition in its
originally-stated form is proven

m Direct proofs of propositions with no hypothesis tends to be
simpler than for those in the form Vx, P(x) — Q(x).

m Usually, a definition is used to facilitate the proof.



Sets, a Quick Intro
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m Set: an unordered collection or group of objects, which are
said to be elements, or members of the set

Direct

m Subset: Let A and B be sets. Then
ACB & V¥ [x € A— x € B]

m Complement of A, denoted A, is the set

x| ~(xeA)} = {x[xgA}
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m Union of A and B, denoted A U B, is the set
{x| xe AvxeB}

Direct

m Intersection of A and B, denoted A N B, is the set
{x | xe Anx € B}

If the intersection is void, A and B are said to be disjoint



Direct Proof, Example 1
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ses1.6-17  Theorem For all sets Aand B, AC AUB

Discussion Let A and B be arbitrary sets, and let x be an

S arbitrary element of A (Assume x € A). We must prove
xeAUB

Proof

m By definition of union, we must show x € Aor x € B

m Since we assumed x € A, the desired conclusion, x € A or
x € B follows immediately

m Thus, x € AU B, and the proof is complete
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Direct

Direct Proof, Example 2

Theorem For all sets X and Y, XN (YUX) C Y

Discussion Let X and Y be arbitrary sets. To prove
XN (YUX)CY, let a be an arbitrarily chosen element of
XN(YUX), and prove a € Y

Proof

m By the assumption (and definition of intersection), a € X
andac YUX

m From this, we know a € X AND eitherac Y orae X
m Thus, eithera€ Yora¢g X
m But we also know a € X, so a &€ X is false

m Hence, we conclude a € Y, and the proof is complete



Propositions With One Or More Hypotheses

Mat 234_5
Week s The tools we can use:
Secs 1.6 — 1.7
m the assumption(s) we're entitled to make at the outset, in
S setting up the proof

m assumed axioms and previously—proved theorems (if any)
m rules of inference from logic

m in addition, most propositions contain one or more
hypotheses — statements which are assumed to be true
(and will likely be used in the proof)
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Direct

Direct Proof, Example 3

Theorem For all sets X, Y, and Z, if X C Y, then
XNZCyYyn/Z.

Discussion Let X and Y be sets, such that X C Y. To prove
XNZCYNZ, assumebe XNZandshow be YNZ. To
do this, we'll have to prove that b € Y and b € Z. Notice we
are focusing on the conclusion.

Proof

m What do we know or assume is true? b € X N Z, which
means (by definition of N) that b€ X and be Z — /

m Now we just have to prove b € Y

m Since b€ X and X C Y, by definition of C, we can
conclude be Y — /

m Thus, we have proven if X C Y, then XNZCYNZ
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Direct

Direct Proof, Example 4

Theorem Every non—constant linear function
f(x) = Mx + B, M # 0, is one—to—one.

Discussion Let M be a nonzero real number. Let x; and x> be
real numbers and assume that f(x;) = f(x2). We must prove
that x; = xp (since that is the definition of one—to—one).

Proof

m Since f(x1) = Mx; + B and f(x2) = Mxp + B, we have
Mxi + B = Mx, + B

m By a rule of elementary algebra, if Mx; + B = Mx + B,
then Mx; = Mx»

m Since Mx; = Mxy and M # 0 (by hypothesis), we conclude
by another rule of elementary algebra that x; = xo, as
desired.



Disproving False Propositions
Having Conclusions of the Form Vx[P(x) — Q(x)]
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m Sometimes we are faced with a proposition that must either
be “proved or disproved,” and are not told in advance if the

Direct proposition is true.

m If it is false, then it will be impossible to write a correct
proof of the proposition

m Trying to do so may provide insight, but will not lead to a
valid proof.



Example 5
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Prove or disprove:
Theorem For all sets X, Y, and Z,if XN Z C Y NZ, then
Direct X g Y

Discussion Suppose we attempt to prove this proposition. Let
X, Y, and Z be arbitrary sets such that XN Z CYNZ. To
prove X C Y, let w € X; we must prove w € Y.

At this point, we run into a problem: w € X doesn’t mean
w € X N Z, unless we know w € Z (which we do not). So
either there is another proof method, or the proposition is false.



Mat 2345 Finding a Counterexample — a specific example that

Swejkﬁ}isl contradicts the truth of the proposition.
- m First, we must determine the negation of the proposition
m The negation of Vx[P(x) — Q(x)] is Ix[P(x) A = Q(x)]
Counter—
eEpE m So the negation of the proposition is: “there exists sets X,
Y, and Z such that XN Z C Y N Z but X is not a subset of
Y.”

m Consider: X = {4,7}. Y ={7,9}, and Z = {7,9,10}.
Then XNZ={7}, YNZ={7,9},soXNZCYNCZ
However, X Z Y.

m Hence we have a counterexample; the proposition is false.
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Counter—
example

Note: a single counterexample to a general proposition is
sufficient to prove that proposition false.

On the other hand, if we were to try to prove a general
proposition true by example, we would have to show it
holds for all elements in the domain — impossible when the
domain is infinite.

In that case, no number of specific cases that affirm a
proposition are sufficient to establish its truth in general.

A general proof is required for a general case with an infinite
domain.



Tactic of Division into Cases
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m This method is used as the propositions we wish to prove
become more complex.

m It may be that we must consider p V —p, which breaks down
into two cases: p and —p

Cases

m Or, there may be a finite number of possibilities to consider,
and we may have more than two cases. For example,
x <0, x=0, and x > 0.



Example 7, Proof by Cases
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ses16-17  Theorem For all sets A and B, (ANB)U(ANB) C A

Discussion Let A and B be arbitrary sets. To prove the
proposition, assume x € (AN B)U (AN B) and prove x € A.

Proof
Cases

m By definition of U, we know x € (AN B) or x € (AN B).
m That is, either (x € AAx € B) or (x € AAx € B)

m We don’t know which is the case, but we do know one of
them must be true.
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m Now the argument can be divided into two exhaustive cases:
Casel xe (ANB)=xe€AAxeB
Then, in particular, x € A (by definition of N and A), so the
conclusion holds.
Cases Casell x€ (ANB)=x€ AAXxEB

Then again, x € A (by definition of N and A), so the
conclusion holds.

m Under either of the only two possible cases, we have x € A,
the desired conclusion.



Example 8
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Theorem For all sets Aand B, AC (AN B)U (AN B)

Discussion Let A and B be arbitrary sets. To prove the
proposition, assume x € A and prove x € (AN B) U (AN B).
To do this, we must prove either x € (AN B) or (x € AN B)

Cases

Proof

m Thus, either (x € A and x € B), or else (x € A and x € B).

m Since we assumed x € A, we need only consider whether x is
in B or B.
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m Now the argument can be divided into two exhaustive cases:

Case | xe B

Then, since x € A, we have x € Aand x € B, or x € (AN B)

cases Casell xe B - -
Then since x € A, we have x € Aand x € B, or x € (AN B)

m Thus we have shown that x € (AN B) or x € (AN B), so x
must be in their union.



Indirect Proof
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B 11O = 1L m Sometimes it's convenient, or even necessary, to prove a
form of a proposition that is different from the original, but
logically equivalent to it.

m Whenever we write a proof in such a form, it's called an

indirect proof.

m Three common forms of indirect proof, based on three
logical equivalences of pairs of propositions:

Indirect

1. Proof by Contraposition: —g — —p is equivalent to p — g
2. Proof by Contradiction: —p — (g A —q) is equivalent to p

3. For conclusions having the form “either q or r:
(pA—q) — ris equivalent to p — (q V r)"
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Indirect

Proof by Contraposition

Proof by Contraposition: —q — —p is equivalent to p — g

Sometimes it's difficult to see how to prove a proposition of
the form Vx[P(x) — Q(x)] by starting with the assumption
that P(x) is true.

So, what can we do if we cannot see how to deduce the
conclusion, Q(x), from the hypotheses?

In some proofs, assuming ~Q(x), the negation of the
conclusion, provides a better match with known facts and
the other given hypotheses (if any), and may lead more
readily to = P(x), the negation of the original assumption.



Proof by Contradiction
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se16.1; | Proof by Contradiction: —p — (g A —q) is equivalent to p
m In this method, we may prove a conclusion p by showing
that the denial of p leads to a contradiction.
m Proof by contraposition is actually a form of proof by
contradiction: in a proof of p — g, we assume the truth of p
Indirect and then use —q to derive —p, we obtain the contradiction

pA=p.

m Another instance in which proof by contradiction is the
standard approach is any proof of a theorem in set theory in
which the conclusion asserts that some set equals the empty
set.



Deriving Conclusions of the Form gV r
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m For conclusions having the form “either g or r:
(p A —=q) — ris equivalent to p — (g V r)"

m Strategy: assume the negation of all but one of the
alternative conclusions and, on that basis, try to prove that
the remaining conclusion must be true.

Indirect

m This equivalence becomes relevant when we must derive a
conclusion involving alternatives — q \V r
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m There may be no circumstance under which we can be sure
which of the alternatives is true — only that at least one of
them must be true under every circumstance in which the
hypothesis is true.

Secs 1.6 - 1.7

m Because of this, we are unable to determine whether to set
Indirect up a direct proof based on the conclusion g or on the
conclusion r.

m The solution is to replace the original problem by the
problem of showing that r follows p A =g (or equivalently,
that g follows from p A =r)
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Indirect

(PA=q) —=r

Theorem For all real numbers x and y, if xy =0, then x =0
ory=0.

Discussion Let x and y be real numbers such that xy = 0.
Now we have a dilemma: there is no evident way of proceeding

toward the conclusion — that one or the other of x or y must
be 0.

Proof

m Thus, we make the additional assumption that x # 0 and
show that therefore y must be 0.

. . . 1 .
m Since x # 0, its reciprocal, ¢, must exist.

m Then y =1y = [%x]y = %xy = %0 =0, so y =0 as desired.



Another Such Proof

Mat235 - Theorem For all sets Aand B, AC BU (AN B).
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Discussion Let A and B be arbitrary sets, and assume that
x € A. We need to prove that x € BU (AN B); that is, either
x€BorxcANB.

Proof

m Assume x ¢ B, and we will show that x must then be in
AN B, or equivalently, x ¢ AAx € B.

Indirect
m We already know that x € A by our initial assumption.

m Since x € B, we also know x € B.

m Thus, x € AA x € B, which we wished to show.
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Induction

Proof by Mathematical Induction

This method will be studied in depth later in the course.

It is used to prove propositions of the form ¥nP(n), where
the universe of discourse is the set of positive integers.

Examples: Vn21,1+2+~~+n:n(”2+1) or
Vn>1,n<2"

The big picture is that we first prove P(1) true, then show
we can prove P(k + 1) is true if P(k) is true — sort of a
bootstrapping process. Once we have a basis and a way to
leverage from P(i) to P(i + 1), we have an algorithm or
method for showing all the P(n) are true.



Existence Proofs — Constructive
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We wish to establish the truth of IxP(x).

Constructive existence proof:

m Establish P(c) is true for some c in the universe

m Then 3xP(x) is true by Existential Generalization (EG).

Existence

m note: ¢ may be specific and unique, or may be arbitrary.



Example 1
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Theorem. There exists an integer solution to the equation

X2 4 y? =22

Proof:

Existence

Choose x =3,y =4, and z = 5.



Example 2

e zas Theorem. There exists a bijection from A = [0, 1] to

ses16-17 B =10,2]

m A bijection is a one-to-one, onto function mapping elements
of one set to another.

mlet a,a1,ap € Aand b e B.

m Then 1-1 (injection) means if f(a1) = b = f(a2), then
dl = an.

m Onto (surjection) means Vb€ B Jac A [f(a) = b], i.e., b
has a pre-image in A, f71(b) =a € A

Existence

Proof:

We build two injections and conclude there must be a bijection
with out ever exhibiting the bijection.



Mat 2345 . .
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m Then f is an injection (and we conclude that |A| < |B]).

X

m Define the function g from B to A as g(x) = %

T
m Then g is an injection.
m Therefore, |B| < |A].
m We now apply a theorem which states that:
Existence if [Al < |B| and [B| < |A], then |A] = [B|.
m Hence, there must be a bijection from A to B.
m Note: we could have chosen g(x) = 7 and obtained a

bijection directly.
Q.E.D.



Existence Proofs — Non-constructive

\',‘v/'atk2§4_5h Assume no c exists which makes P(c) true, and derive a
eel -S|
see16_17  contradiction.

Theorem There exists an irrational number.
Proof

m Assume there doesn't exist an irrational number.
m Then all numbers must be rational.

m Then the set of all numbers must be countable.

m Then the real numbers in the interval [0,1] is a countable
Existence set.

But this set is not countable.

Hence, we have a contradiction — the set is both countable
and not countable.

Therefore, there must exist an irrational number. Q.E.D.
(And we didn't even have to produce it!)
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IFF

Biconditional Proofs

Recall that P +» Q is equivalent to (P — Q) A (Q — P)

When proving a biconditional, we must prove both P — @ and
Q—P

Theorem For the universe of all integers, x is even if and only
if x? is even.

Discussion The quantified assertion is:
Vx[(x is even) > (x? is even)]
Thus, Vx[(x is even) — (x? is even)] and
Vx[(x? is even) — (x is even)]
Assume x is arbitrary.
Proof
Case | Show Vx[(x is even) — (x

Case Il Show Vx[(x? is even) — (x is even)]

2 js even)]
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IFF

Case |.

Show if x is even, then x?2 is even — using a direct
proof.

m If x is even, then x = 2k for some integer k.

m Hence, x? = (2k)? = 4k? = 2(2k?), which is even since it
is an integer which is divisible by 2.

m This completes the proof of Case I.
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Case Il. Show that if x2 is even, then x must be even — using
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an indirect proof.

m Assume x is not even, and show x2 is not even.
m If x is not even, then it must be odd.
m So, x =2k + 1 for some k.

m Then, x? = (2k + 1) = 4k> + 4k + 1 = 2(2k® + 2k) + 1,
which is odd and therefore not even.

FF This completes the proof of Case II.

Thus we have shown that x is even IFF x? is even. Since x was
arbitrary, the result follows by UG.
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