
Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Mat 2345

Week 6

Fall 2013

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Student Responsibilities — Week 6

Reading: Textbook, Section 3.1–3.2

Assignments:

1. for sections 3.1 and 3.2
2. Worksheet #4 on Execution Times
3. Worksheet #5 on Growth Rates

Attendance: Strongly Encouraged

Week 8 Overview

3.1 Algorithms

3.2 Growth of Functions

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

3.1 Algorithms

Algorithm: a finite set of unambiguous instructions for
performing a computation or for solving a problem.

Examples:

Shampoo Instructions: Lather, Rinse, Repeat

Recipe for making Italian Beef:

Place beef roast
1 pkg Au Jus dry gravy mix
1 pkg dry Italian dressing mix and
1 C water in slow cooker
cook all day or over night
shred beef and serve with French Bread or rolls

The instructions that come with a sewing pattern

The instructions for a model airplane or rocket kit

Insert disk and press any key to continue

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Properties of Algorithms

Input – an algorithm usually has input from a specified set

Output – the solution to the problem, also from a specified
set

Definiteness – steps of an algorithm must be defined
precisely

Correctness – an algorithm must produce the correct values
for each of the input values

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Properties of Algorithms — Continued

Finiteness – an algorithm must produce the desired output
after a finite (but perhaps large) number of steps for any
input in the set

Effectiveness – it must be possible to perform each step of
an algorithm exactly and in a finite amount of time

Generality – an algorithm should be applicable for all
problems of the desired form, not just for a particular set of
input values

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Finding the Maximum Value in a Finite Sequence
— Pseudocode

integer max(a1, a2, ..., an : integers)

currmax := a1

for i := 2 to n

if currmax < ai then currmax := ai

{currmax is the largest element}
return currmax;

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

C++ Implementation of Max

template <class T>

T Max (const vector<T> & L){

// PRE: L not empty, type T is comparable

// POST: returns the largest value in vector L

T mymax = L[0];

for (int i = 1; i < L.size; i++)

if (mymax < L[i])

mymax = L[i];

return mymax;

}

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Search Algorithms

The problem: locate a particular element (target) in a list

Distinguish between unordered and ordered (sorted) lists

Two primary algorithms:

Linear or Sequential Search — look at each item in the list,
first to last, comparing them to target until target is found or
we reach end of list

Binary Search — (only used on ordered lists) — compare
target to middle element; discard low or high half of list and
repeat on remaining half of list until found or list is empty

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

The Linear Search Algorithm

integer LinearSearch

(x: integer,

a1, a2, ..., an: distinct integers)

i := 1

while (i <= n and x != ai)

i := i + 1

if i <= n

then return i

else return 0

{ the value returned is the subscript of term that

equals x, or is 0 if x is not found }

Note: it doesn’t matter if the list is ordered or not, this algorithm

will still work

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

The Binary Search Algorithm

integer BinarySearch(x: integer,

a1, a2, ..., an: increasing integers)

i := 1 {left endpoint of search interval}
j := n {right endpoint of search interval}
while i < j

begin

m := floor[(i + j) / 2]

if x > am

then i := m + 1

else j := m

end

if x = ai

then return i

else return 0

Notes: the value returned is the subscript of term that equals x, or is

0 if x is not found; can only be used on sorted list

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Bubble Sort Algorithm

procedure Bubblesort (a1, ..., an:

real numbers with n >= 2)

for i := 1 to n-1

for j := 1 to n - i

if a(j) > a(j+1) then swap a(j) and a(j+1)

{ a1, ..., an is in increasing order }

Other Sorts:
Selection Sort
Insertion Sort
Merge Sort
Quick Sort
Bucket Sort
Radix Sort

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

3.2 Growth of Functions

Time Complexity is a measure of the computational
“steps” of an algorithm relative to the size of input

Algorithms are analyzed to see how the number of
computational steps grows in relation to the size of input, n

Once we have a function to compute the time complexity
of algorithms which solve the same problem, we can compare
them to determine which is more efficient

For example, if the time it takes one sorting algorithm to sort
n values is

T1(n) = 3
2n

2 + 3n

and another takes time

T2(n) = 5n log n + 29

which algorithm should we implement?

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Comparing Function Growth

Quantify the concept: g grows at least as fast as f

What really matters when comparing the complexity of
algorithms?

We mostly care about the behavior for large problems (i.e.,
what happens for ”sufficiently large” input sizes)

Even bad algorithms can be used to solve ”sufficiently small”
problems

We can ignore some implementation details such as loop
counter incrementation — we can straight–line any loop, etc.

Remember, the functions we’re discussing represent the time
complexities of algorithms.

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

f ∈ O(g)

time

k

g(x)

f(x)

size of input

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Big–Oh Notation

g asymptotically dominates f :

Let f and g be functions from N to R.

Then f ∈ O(g) — f is Big–Oh of g or f is order g — iff
∃k ∃C ∀n[n > k → |f (n)| ≤ C |g(n)|, k ,C > 0]

In English: for sufficiently large n, if the function f is
bounded from above by a positive, constant multiple of the
function g , then we say f is “Big–Oh” of g .

If limn→∞
f (n)
g(n) = 0 then f ∈ o(g)

(f is Little–Oh of g , or f is strictly bounded by g)

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Proving Asymptotic Domination

time

k

g(x)

f(x)

size of input

To prove f ∈ O(g), given f and g :

Determine / choose some positive k

Determine / choose a positive C (which may depend upon
choice of k)

Once k and C are chosen, the implication must be proven
true

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Three Important Complexity Classes

Omega Man

Theta

Big − Omega

Bounds from above

Growth rates equivalent

Bounds from below

Big − Oh

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Complexity Classes

The sets O(g), o(g), Ω(g), ω(g), and Θ(g) are called
complexity classes.

O(g) is a set which contains all the functions which g
dominates.

f is O(g) means f ∈ O(g)

We say f ∈ Ω(g) if there are positive constants k and C
such that f (n) ≥ Cg(n) whenever n > k

If f ∈ O(g) and f ∈ Ω(g), then f ∈ Θ(g)

We use ”little-oh” and ”little–omega” when we have strict
inequality

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Example

Let f (n) = 4n + 5 and g(n) = n2.

We wish to show that f ∈ O(g)

We need to find constants k and C , then show the implication

∀n > k , f (n) ≤ Cg(n)

is true for the values we chose.

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

To find k, we can set the functions equal, and solve for n:

4n + 5 = n2

0 = n2 − 4n − 5
0 = (n − 5)(n + 1)

So, n = 5 or n = − 1, but n is the size of input and
therefore cannot be negative. Thus, k must be at least 5.
If we choose k = 6, then C can be any positive number
greater than or equal to 1.

All that is left is the proof that ∀n > k, f (n) ≤ Cg(n), which
we shall revisit when we discuss induction proofs.

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Big–Oh Properties

f is O(g) iff O(f) ⊆ O(g)

If f ∈ O(g) and g ∈ O(f), then O(f) = O(g)

The set O(g) is closed under addition:

If f ∈ O(g) and h ∈ O(g), then f + h ∈ O(g)

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

O(g) is closed under multiplication by a scalar a ∈ R:

If f ∈ O(g) then af ∈ O(g)

I.e., O(g) is a vector space

Also, as you would expect,

If f ∈ O(g) and g ∈ O(h), then f ∈ O(h)

In particular,

O(f) ⊆ O(g) ⊆ O(h)

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Theorem

If f1 ∈ O(g1) and f2 ∈ O(g2), then:

1. f1f2 ∈ O(g1g2)

2. f1 + f2 ∈ O(max{g1, g2})

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Functional Values for Small n

log2 n
√
n n n2 2n n! nn

0 1.0000 1 1 2 1 1

1.0000 1.4142 2 4 4 2 4

1.5850 1.7321 3 9 8 6 27

2.0000 2.0000 4 16 16 24 256

2.3219 2.2361 5 25 32 120 3125

2.5850 2.4495 6 36 64 720 46,656

2.8074 2.6458 7 49 128 5040 823,543

3.0000 2.8284 8 64 256 40,320 1.67× 107

3.1699 3.0000 9 81 512 362,880 3.87× 108

3.3219 3.1623 10 100 1024 3.6× 106 1010

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Approximate Functional Values for Powers of n

log2 n
√
n n n2 2n n! nn

3.32 3.16 101 102 1024 3.63(106) 1010

6.64 10 102 104 1.27(1030) 9.3(10157) 10200

9.97 31.62 103 106 1.07(10301) 4(102567) 103000

13.29 100 104 108 2(103010) 2.9(1035,659) 1040,000

16.61 316.2 105 1010 1030,103 2.9(10456,573) 10500,000

19.93 1000 106 1012 10301,030 8.3(105,565,708) 1060,000,000

39.86 106 1012 1024 BIG LARGE HUGE

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Important Complexity Classes

Theorem. The hierarchy of several familiar sequences in the
sense that each sequence is Big–Oh of any sequence to its
right:

1, log2 n, . . . , 4
√
n, 3
√
n,
√
n, n, n log2 n, n

√
n, n2, n3, n4, . . . , 2n, n!, nn

Similarly, stated in set notation:

O(1) ⊆ O(log n) ⊆ O(n) ⊆ O(n log n) ⊆ O(n2) ⊆ O(nj) ⊆ O(cn) ⊆ O(n!)

where j > 2 and c > 1

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Time Equivalences

Second 1 100

Milliseconds 1,000 103

Microseconds 1,000,000 106

Nanoseconds 1,000,000,000 109

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Largest Problem Sizes

Let f (n) be the time complexity of an algorithm in
microseconds.
The largest problem of size n that can be solved in:

1 second is f (n)/106

1 minute is f (n)/(60 ∗ 106)

1 hour is f (n)/(60 ∗ 60 ∗ 106)

1 day is f (n)/(24 ∗ 60 ∗ 60 ∗ 106)

1 month is f (n)/(30 ∗ 24 ∗ 60 ∗ 60 ∗ 106)

1 year is f (n)/(12 ∗ 30 ∗ 24 ∗ 60 ∗ 60 ∗ 106)

1 century is f (n)/(100 ∗ 12 ∗ 30 ∗ 24 ∗ 60 ∗ 60 ∗ 106)

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Largest Problems “Do–able” in 1 Second

1. Let f (n) = n. Then the largest problem for which we can
compute an answer in one second is:

n/106 = 1
n = 106

2. Let f (n) = n2. Then the largest problem for which we can
compute an answer in one second is:

n2/106 = 1
n =

√
106 = 103

3. Let f (n) = 2n. Then the largest problem for which we can
compute an answer in one second is:

2n/106 = 1
2n = 106 ≈ 219

n ≈ 19

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Let f (n) = n!. Then the largest problem for which we can
compute an answer in one second is:

n!/106 = 1

n! = 106

Here, it helps to use a calculator. . . , and we find

9! = 362, 880 — too small

10! = 3, 628, 880 — too large

n ≈ 9

(Recall that n is input size)

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Review — Exponents

xaxb = xa+b 2527 = 212

xa

xb = xa−b 38

32 = 36

(xa)b = xab (52)3 = 56

Notes

xn + xn = 2xn not x2n 32 + 32 = 2(32)

53 + 53 = 27 + 27 =

2n + 2n = 2100 + 2100 =

34 + 54 = 2n + 3n =

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Review — Logarithms

Logarithm: xa = b iff logx b = a

23 = 8 iff log2 8 = 3

54 = 625 iff log

= iff log3 81 = 4

Theorem. log ab = log a + log b

log 32 = log(25) = 5
= log(8 ∗ 4)
= log 8 + log 4
= log 23 + log 22

= 3 + 2 = 5
√

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Other Formulae You Should Know

log a
b = log a − log b

log 32
4 = log 25

22 = log 25−2 = log 23 = 3 — and —

log 32
4 = log 32 − log 4 = log 25 − log 22 = 5 − 2 = 3

Determine log 1024
64 both ways shown above

log ab = b log a

log 163 = log(24)3 = log 212 = 12 — and —

log 163 = 3 log 16 = 3 log 24 = 3 ∗ 4 = 12

Determine log 1285 both ways shown above

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

Other General Knowledge

∀ x > 0, log x < x ∀ n > 0, log n < n

log 1 = 0, log 2 = 1, log 1024 = 10, log 1, 048, 576 = 20

∑n
i=0 2i = 2n+1 − 1

Thus, if n = 3:∑3
i=0 2i = 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15

— and —

2n+1 − 1 = 23+1 − 1 = 24 − 1 = 16 − 1 = 15

Mat 2345

Week 6

Algorithms

Properties

Examples

Searching

Sorting

Time
Complexity

Example

Properties

Comparison

Review

In general:∑n
i=0 ai = an+1 − 1

a − 1

∑n
i=1 i = n(n+1)

2 ≈ n2

2

Thus,
∑5

i=1 i = 1 + 2 + 3 + 4 + 5 = 15 — and —

∑5
i=1 i = 5(5+1)

2 = 5∗6
2 = 30

2 = 15

	Algorithms
	Properties
	Examples
	Searching
	Sorting
	Time Complexity
	Example
	Properties
	Comparison
	Review

