| Mat 2345   |
|------------|
| Week 7     |
|            |
| VVeek (    |
| Complexity |
| Solvable   |
| Tractable  |
| P vs NP    |
| Number Thy |
| Division   |
| Congruency |
| Duimage    |
| Primes     |
| LCM        |
|            |
|            |
|            |

### Student Responsibilities — Week 7

#### Mat 2345

#### Week 7

- Week 7
- Complexity Solvable Tractable P vs NP Number Thy Division Congruency Primes
- **Reading**: Textbook, Section 3.3–3.5
- **Assignments**: Sections 3.3, 3.4, and 3.5
- Attendance: Autumnally Encouraged

### Week 7 Overview

- 3.3 Complexity of Algorithms
- 3.4 The Integers and Division
- 3.5 Primes and Greatest Common Divisors

### Section 3.3 — Complexity of Algorithms

## Mat 2345 Week 7 Week 7 Complexity When does an algorithm produce a satisfactory solution to a problem? P vs NP Number Thy How can we prove an algorithm always produces the correct answer? (seen in next chapter)

### Analyzing Efficiency

Mat 2345

Week 7

Week 7

Complexity

Solvable Tractable P vs NP Number Thy

Division

Congruenc

Primes

LCM

# How can we analyze the efficiency of an algorithm?

- Time Complexity One measure is the number of steps it performs, or the time it takes, to solve a problem when input values are of a specified size
- Space Complexity A second measure is the amount of computer memory required during execution of an implementation of the algorithm, when input values are of a specified size

# Time Complexity

#### Mat 2345

Week 7

#### Week 7

Complexity Solvable Tractable P vs NP Number Thy Division Congruency Primes It is obviously important to know whether an algorithm will produce an answer in milliseconds or time measured in years.

 Time complexity can be described in terms of the number of operations required instead of actual computer time because of the difference in time needed for different computers to perform basic operations.

#### Mat 2345

#### Week 7

#### Week 7

Complexity Solvable Tractable P vs NP Number Thy Division Congruency Primes LCM It would be quite complicated to break down all operations to the basic bit operations that a computer uses

 Various machines, from personal computers to supercomputers, perform basic bit operations at rates which differ by as much as 1,000 times or more

# Space Complexity

#### Mat 2345

- Week 7
- Week 7
- Complexity Solvable
- Tractable
- P vs NP
- Number Thy
- Division
- Congrue
- Primes
- ICM

- It is obviously important to determine whether an algorithm will require more memory than we have available
- Space complexity can be described in terms of the amount of memory necessary to store one element × the size of input, plus additional storage required by the algorithm.
- It is often given in terms of the size of input and its storage requirements
- Considerations of space complexity are tied to the particular data structures used to implement the algorithm

# Analyzing Time Complexity

| Mat 2345   |                                                             |
|------------|-------------------------------------------------------------|
| Week 7     |                                                             |
| Week 7     |                                                             |
| Complexity | We can count comparisons, data movement, arithmetic         |
| Solvable   | operations, or other types of "steps."                      |
| Tractable  |                                                             |
| P vs NP    |                                                             |
| Number Thy | It just depends upon the problem and what's important to us |
| Division   |                                                             |
| Congruency |                                                             |
| Primes     |                                                             |
| LCM        | I here are three types of analysis.                         |

#### Mat 2345

#### Week 7

#### Week 7

#### Complexity

- Solvable
- Tractable
- P vs NP
- Number Thy
- Division
- Congruency
- Primes
- LCM

#### Best Case

- The run-time conditions are the best we can ever get for example: the numbers are already sorted, or there is only one value in the list so it is the max.
- Doesn't give us very much information about the algorithm besides a lower-bound on execution time.

#### Average Case

- can be very difficult to determine.
- cannot predict behavior for bad cases

### Worst Case

- most commonly used (at undergraduate level)
- gives an upper-bound on execution time, but can be overly pessimistic

### Analyzing the Search Algorithms

Mat 2345

Week 7

Week 7

#### Complexity

Solvable

Tractable

P vs NP

**Number Thy** 

Division

Congruenc

Primes

LCM

based on the **number of comparisons** made:

Linear Search

Binary Search (for simplicity, assume there are  $n = 2^k$  elements in the input list)

### Commonly Used Complexity Terminology

| Mat 2345               |  |                             |                               |  |
|------------------------|--|-----------------------------|-------------------------------|--|
| Week 7                 |  | Complexity                  | Terminology                   |  |
| Week 7<br>Complexity   |  | $\Theta(1)$ , $\Theta(c)$   | Constant complexity           |  |
| Solvable<br>Tractable  |  | $\Theta(\log n)$            | Logarithmic complexity        |  |
| P vs NP<br>Number Thy  |  | $\Theta(n)$                 | Linear complexity             |  |
| Division<br>Congruency |  | $\Theta(n \log n)$          | <pre>nlog(n) complexity</pre> |  |
| Primes<br>LCM          |  | $\Theta(n^b)$               | Polynomial time complexity    |  |
|                        |  | $\Theta(b^n)$ , where b > 1 | Exponential complexity        |  |
|                        |  | $\Theta(n!)$                | Factorial complexity          |  |

### Classes of Problems

#### Mat 2345

- Week 7
- Week 7 Complexity Solvable Tractable P vs NP Number Thy Division
- Congruenc
- Primes
- LCM

- Problems for which answers can be found using a computer are called solvable
  - Problems which are not solvable by computer are called unsolvable

One famous example of an unsolvable problem: The Halting Problem

Can one program determine whether another arbitrary program will halt when executed with a specified input?

(The answer is no – a proof is given in the textbook, pg 176.)

### Tractable vs Intractable Problems

- Mat 2345 Week 7
- Week 7 Complexity Solvable **Tractable** P vs NP Number Thy Division Congruency Primes LCM
- A solvable problem is called **tractable** if there exists an algorithm with polynomial worst-case complexity to solve it.

Even if a problem is tractable, there's no guarantee it can be solved in a reasonable amount of time for even relatively small input values.

 Most algorithms in use have polynomial complexities of degree 4 or less.

### Mat 2345 Week 7

- Week 7 Complexity Solvable **Tractable** P vs NP Number Thy Division Congruency Primes LCM
- Solvable algorithms with worst-case time complexities that exceed polynomial times are called intractable

 Usually, but not always, an extremely large amount of time is required to solve the problem for the worst cases of even small input values.

 In a few instances, an exponential or worse algorithm may be able to solve problems of reasonable size in sufficient time to be useful

### Further Algorithm Classifications

#### Mat 2345

- Week 7
- Week 7 Complexi
- Tractable
- P vs NP
- Number Thy
- Division
- Congruenc Primes
- LCM

- Tractable algorithms are said to belong to class P polynomial time algorithms.
- It is commonly believed that many solvable problems have no polynomial time algorithm to solve them, but that given a possible solution, it can be checked in polynomial time.
- Problems for which a solution can be checked in polynomial time belong to the class NP
  - NP stands for Non-deterministic polynomial time we guess an answer then check it in polynomial time.

### NP-Complete Problem Class

#### Mat 2345

#### Week 7

Week 7

Solvable

Tractable

P vs NP

Number Thy

Division

Congruency

Primes

LCM

Another important class of problems, called **NP–Complete** problems, are problems in the class NP which have the property that:

If any of the problems in the NP-Complete class can be solved in polynomial time, then all of them can be

No one has been able to find such an algorithm. It is suspected that no one ever will.

### Section 3.4 — The Integers and Division

#### Mat 2345 Week 7

Week 7 Complexi

Solvable

Tractable

P vs NP

Number Thy

Division

Congruenc

Notation:

Primes

LCM

 Integers and their properties belong to a branch of Mathematics called Number Theory

• If a and b are integers, with  $a \neq 0$ , we say that a divides b if there is an integer c such that b = ac.

 $a \mid b, a \text{ divides } b$ a is a factor of b; b is a multiple of a $a \not\mid b, a \text{ does not divide } b$  Mat 2345 Week 7

Week 7 Complexit Solvable Tractable P vs NP

Number Thy Division

Primes

LCM

**Theorem**. Let *a*, *b*, and *c* be integers. Then:

The sum of multiples is a multiple:

if  $a \mid b$  and  $a \mid c$ , then  $a \mid (b + c)$ 

If an integer divides a factor, then it divides the product: if  $a \mid b$ , then  $a \mid bc$  for all integers c

Divisibility is transitive:

```
if a \mid b and b \mid c, then a \mid c
```

**Corollary**. If a, b, and c are integers such that  $a \mid b$  and  $a \mid c$ , then  $a \mid (mb + nc)$  whenever m and n are integers.

### Division of Integers

Mat 2345

Week 7

Week 7

#### Theorem. The "Division Algorithm".

Let **a** be an integer, **d** be a positive integer. Then there are unique integers **q** and **r**, with  $0 \le r < d$ , such that

$$a = dq + r$$

P vs NP Number Thy

Division

Congruency Primes LCM • In the equality given in the division algorithm:

d is called the divisor,

a is called the **dividend**,

q is called the quotient, and

r is called the remainder

### Modular Arithmetic

Mat 2345 Week 7

Week 7 Complexity Solvable Tractable P vs NP Number Thy Division Congruency

Primes

Let a be an integer and m be a positive integer. We denote by (a mod m) the remainder when a is divided by m.

From this definition, it follows that: if  $(a \mod m) = r$ , then a = qm + r and  $0 \le r < m$ .

If a and b are integers, and m is a positive integer, then
 a is congruent to b modulo m if m divides a - b.
 This is denoted by: a ≡ b(mod m)

**Note**: *a* **mod** *m* and *b* **mod** *m* will yield the same remainder.

- Consider: $(17 5) \mod 6 = 12 \mod 6 = 0$ Also: $17 \mod 6 = 5$  and  $5 \mod 6 = 5$
- **Thus**:  $17 \equiv 5 \pmod{6}$

# More on Congruency

Mat 2345

Week 7

Week 7 Complexit Solvable Tractable P vs NP

Number Thy

Division

Congruency

LCM

• **Theorem**. Let *m* be a positive integer. The integers *a* and *b* are congruent modulo *m* if and only if there is an integer *k* such that a = b + km.

• **Theorem**. Let *m* be a positive integer. If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then

$$a + c \equiv (b + d) (mod m)$$
  
and  
 $ac \equiv bd (mod m)$ 

Consider:  $7 \equiv 2 \pmod{5}$  and  $11 = 1 \pmod{5}$ Thus:  $7 + 11 = 18 \equiv (2+1) \pmod{5} = 3 \pmod{5}$ And:  $7 \cdot 11 = 77 \equiv (2 \cdot 1) \pmod{5} = 2 \pmod{5}$ 

# Applications of Congruences

#### Mat 2345

#### Week 7

- Week 7 Complexi Solvable
- Tractab
- P vs NP
- Number Thy
- Division
- Congruency
- Primes
- LCM

 Hashing Functions — assign memory locations to values, records (keys), or computer files for easy retrieval

 Pseudo-random Numbers — systematically generate a sequence of numbers that have properties of randomly chosen numbers

 Cryptology — encryption, to make a message secret; decryption, to determine the original message

# Section 3.5 — Primes and Greatest Common Divisors

#### Mat 2345

- Week 7
- Week 7 Complex
- Tractable
- P vs NP
- Number Thy
- Division
- Congruency
- Primes LCM

■ A positive integer *p* > 1 is called **prime** if the only positive factors of *p* are 1 and *p*.

• A positive integer that is greater than 1 and is not prime is called **composite**.

- The Fundamental Theorem of Arithmetic.
  - Every positive integer can be written uniquely as the product of primes, where the prime factors are written in order of non-decreasing size.

# Showing Primality

Mat 2345

Week 7

Week 7

Complexity Solvable Tractable P vs NP Number Thy Division Congruency Primes LCM **Theorem**. If *n* is a composite integer, then *n* has a prime divisor less than or equal to  $\sqrt{n}$ .

Show 103 is prime, using the above theorem and the fact  $\sqrt{103} < 11.$ 

**How to factor**: attempt to divide by known primes beginning with 2, 3, 5, ...

**Theorem**. There are infinitely many primes. See proof by contradiction, pg 212.

### Distribution of Prime Numbers

#### Mat 2345

#### Week 7

Week 7 Complexity Solvable Tractable P vs NP Number Thy Division Congruency Primes LCM **The Prime Number Theorem**. The ratio of the number of primes not exceeding x and  $\frac{x}{\ln(x)}$  approaches 1 as x grows without bound.

In other words, the number of primes  $\leq x$  is  $\sim \frac{x}{\ln(x)}$ .

The probability that a random integer < x is prime is  $\sim \frac{1}{\ln x}$ 

Further, the probability that an integer *n* is prime is  $\sim \frac{1}{\ln(n)}$ .

### **Open Problems**

Mat 2345

Week 7

Week 7

Complexity

Solvable

Tractable

P vs NP

**Number Thy** 

Division

Congruency

Primes

## **Goldbach's Conjecture**

Every even integer n > 2 is the sum of two primes. (Has been checked for all even numbers up to  $2 \times 10^{17}$ )

### The Twin Primes Conjecture

There are infinitely many twin primes — primes that differ by 2.

 $\begin{array}{l} (\text{e.g.,} < 3,5>, <17,19>, <4967,4969>)\\ \text{Largest known (2012): } 3,756,801,695,685\times2^{666669}\pm1, \text{ numbers with } 200,700 \text{ digits; http://primes.utm.edu/top20/page.php?id=1} \end{array}$ 

### **Relatively Prime** Integer Pairs

Mat 2345

Week 7

Week 7 Complex Solvable

Tractable

P vs NP

Number Thy

Division

Congruency

Primes

Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called the greatest common divisor, denoted gcd(a, b).
 Find the greatest common divisors: gcd(12, 39): gcd(23, 103):

gcd(8, 9): gcd(28, 42):

• The integers a and b are **relatively prime** if their greatest common divisor is 1.

### Pairwise Relatively Prime Integers

if  $gcd(a_i, a_i) = 1$  whenever  $1 \le i < j \le n$ .

Mat 2345

Week 7

Week 7 Complexity Solvable Tractable P vs NP Number Thy Division

Are the following sets of integers pairwise relatively prime? 22, 28, and 31

• The integers  $a_1, a_2, \ldots, a_n$  are pairwise relatively prime

Primes

• 
$$(2^3 \cdot 5 \cdot 11)$$
,  $(3^3 \cdot 7)$ , and  $(13 \cdot 23^5)$ 

•  $(2^3 \cdot 5 \cdot 11)$ ,  $(3^2 \cdot 11^2)$ , and 29

# Least Common Multiple

Mat 2345

Week 7

Week 7 Complexity Solvable Tractable P vs NP Number Thy Division Congruency

Primes

LCM

The Least Common Multiple of the positive integers  $\mathbf{a}$  and  $\mathbf{b}$ , denoted  $lcm(\mathbf{a}, \mathbf{b})$ , is the smallest positive integer that is divisible by both  $\mathbf{a}$  and  $\mathbf{b}$ .

What is the least common multiple of each of the following pairs?

Icm(22, 28) =

• 
$$\operatorname{lcm}(2^3 \cdot 5 \cdot 11, 3^3 \cdot 7) =$$

■ 
$$lcm(13 \cdot 23^5, 13^2) =$$

• 
$$\operatorname{lcm}(2^3 \cdot 5 \cdot 11, 3^2 \cdot 11^2) =$$

### Product of gcd and lcm

Mat 2345 Week 7

Week 7 Complexity Solvable Tractable P vs NP Number Thy Division Congruency

Primes

LCM

Theorem. Let a and b be positive integers. Then:  

$$ab = gcd(a, b) \cdot lcm(a, b)$$
  
Consider:  
 $600 = 2^3 \cdot 3 \cdot 5^2$  and  $56250 = 2 \cdot 3^2 \cdot 5^5$   
 $lcm(600, 56250) = 2^3 \cdot 3^2 \cdot 5^5$   
 $gcd(600, 56250) = 2 \cdot 3 \cdot 5^2$   
 $product(600, 56250) = 2^4 \cdot 3^3 \cdot 5^7$ 

• product(lcm(600, 56250), gcd(600, 56250)) =  $2^4 \cdot 3^3 \cdot 5^7$ Why are the last two products equivalent?