Mat 2345 — Discrete Math
Week 12
Week 12
Recursion
Practice
MergeSort
Complexity
Correctness
Loop Invariants

Student Responsibilities — Week 12

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion

Practice

MergeSort

Complexity

Correctness

Loop Invariants

Reading: Textbook, Section 4.4 & 4.5

Assignments:

Sec 4.4 8, 10, 24, 28 Sec 4.5 2, 4, 7, 12

Attendance: Frostily Encouraged

Week 12 Overview

- Sec 4.4. Recursive Algorithms
- Sec 4.5. Program Correctness

Section 4.4 Recursive Algorithms

- Mat 2345 Discrete Math
- Week 12
- Week 12
- Recursion Practice MergeSort Complexity Correctness Loop
- We will assume we have built-in functions:
- Length() which returns the number of elements in the list

A recursive procedure to find the max in a non-empty list.

- Max() which returns the larger of two values
- Listhead() which returns the first element in a list

Note: Max() requires one comparison

```
Mat 2345 -
 Discrete
  Math
           procedure Maxlist(...list...){
           // PRE: list is not empty
 Week 12
           // POST: returns the largest element in list
Week 12
           // strip off list head and pass on the remainder
Recursion
           if Length(list) is 1 then
                return Listhead(list)
           else
                return Max(Listhead(list),
                            Maxlist(remainder_of_list))
           }
```

What happens with the list {29}? With the list {3,8,5}?

How Many Comparisons?

Mat 2345 — Discrete Math

Week 12

Week 12

Recursion Practice

MergeSor

Complexity

Correctness

Loop Invariants The recurrence equation for the number of comparisons required for a list of length n, C(n) is:

C(1) = 0 the initial condition C(n) = 1 + C(n-1) the recurrence equation So, $C(n) \in O(n)$ as we would expect

A Variant of Maxlist()

Mat 2345 — Discrete Math

- Week 12
- Week 12
- Recursion Practice MergeSort Complexity Correctness
- Loop Invariants

- Assuming the list length is a power of 2, here is a variant of Maxlist() using a Divide-and-Conquer approach.
 - Divide the list in half, and find the maximum of each half
 - Find the Max() of the maximum of the two halves
 - Apply these steps to each list half recursively.
 - What could the base case(s) be?

Maxlist2() Algorithm

```
Mat 2345 -
           procedure Maxlist2(...list...){
 Discrete
  Math
           // PRE: list is not empty
 Week 12
           // POST: returns the largest element in list
           // Divide list into two lists, take the max of
Week 12
           // the two halves (recursively)
Recursion
            if Length(list) is 1 then
MergeSort
                 return Listhead(list)
           else
                 a = Maxlist2(first half of list)
                 b = Maxlist2(second half of list)
                 return Max(a, b)
           }
           What happens with the list \{29, 7\}?
           With the list \{3, 8, 5, 7\}?
```

How Many Comparisons in Maxlist2()?

Mat 2345 — Discrete Math Week 12

Week 12 Recursion

- There are two calls to Maxlist2(), each of which requires C(ⁿ/₂) operations to find maximum.
 - One comparison is required by the Max() function

The **recurrence equation** for the number of comparisons required for a list of length n, C(n), is:

C(1) = 0 the initial condition $c(n) = 2C(\frac{n}{2}) + 1$ the recurrence equation

Consider A Sampling

Mat 2345 — Discrete Math	_		n		<i>C</i> (<i>n</i>)	= 20	$C(\frac{n}{2})+1$
Week 12	-	2 ⁰	=	1	1	=	$2^1 - 1$
Week 12 Recursion		2 ¹	=	2	3	=	$2^2 - 1$
Practice		2 ²	=	4	7	=	$2^{3} - 1$
MergeSort Complexity		2 ³	=	8	15	=	$2^4 - 1$
Correctness		2 ⁴	=	16	31	=	$2^{5} - 1$
Invariants			:			:	
		2 ^{log n}	=	n	$2^{\log(n)+1}-1$	=	$2n-1 \in O(n)$
	Th	us, C(n	n) =	$2^{\log(n)}$	$^{+1}-1 \in O(n$)	

Practice I: **Prove** $3n^2 + 5n + 4 \in O(n^2)$

Mat 2345 — Discrete Math

Week 12

Recursion Practice MergeSort Complexit

Week 12

Correctnes

Loop Invariants **Definition of Big–Oh**: $f(n) \in O(g(n))$ if there exists positive constants c and N_0 such that $\forall n \ge N_0$ we have $f(n) \le cg(n)$

We need to find c > 0 and $N_0 > 0$ such that: $3n^2 + 5n + 4 \leq cn^2 \quad \forall n \geq N_0$

We note that

 $3n^2 + 5n + 4 \leq 3n^2 + 5n^2 + 4n^2$, when $n > 0 \leq 12n^2$

and we can choose c = 12

Practice I, Cont.

Mat 2345 -Discrete Math Week 12 To find N_0 : $3n^2 + 5n + 4 = 12n^2$ $0 = 9n^2 - 5n - 4$ Week 12 Practice MergeSort when n = 1, $9(1)^2 - 5(1) - 4 = 9 - 5 - 4 = 0$ Thus, $3n^2 + 5n + 4 < 12n^2 \quad \forall n > 1$, and therefore, $3n^2 + 5n + 4 \in O(n^2)$

Mat 2345 — Discrete Math

Week 12

Week 12

Recursion

Practice

MergeSort

Complexit

Correctness

Loop Invariants

Practice II.
Given
$$T(n) = 2n - 1$$
, prove that $T(n) \in O(n)$

Practice III. Prove that T(n) = 3n + 2 if

$$T(n) = \begin{cases} 2 & n = 0 \\ 3 + T(n-1) & n > 0 \end{cases}$$

MergeSort Algorithm

```
Mat 2345 -
 Discrete
           list MergeSort(list[1..n]){
  Math
           // PRE: none
 Week 12
           // POST: returns list[1..n] in sorted order
           // Functional dependency: Merge()
Week 12
              if n is 0
                 return an empty list
MergeSort
              else if n is 1
                 return list[1]
              else {
                list A = MergeSort(list[1..n/2])
                list B = MergeSort(list[n/2 + 1..n])
                list C = Merge(A, B)
                return C
              }
           }
```

Time Complexity of MergeSort()

Mat 2345 — Discrete Math Prove by induction that the time complexity of MergeSort(), $T(n) \in O(n \log n)$

Week 12

Recursion Practice MergeSort Complexity

Week 12

Loop Invariants What we need to do:

Establish a Base Case for some small *n*

Prove
$$T(k) \leq cf(k) \rightarrow T(2k) \leq cf(2k)$$

In particular, we need to prove $\forall k \geq N_0$ that:

$$egin{array}{rcl} T(k) \leq ck \log k &
ightarrow T(2k) & \leq & c2k \log(2k) \ & = & c2k (\log 2 + \log k) \ & = & c2k \log k + c2k \end{array}$$

where $k = 2^m$ for some $m \ge 0$, $wlog^*$

* without loss of generality

Base Case

Let n = 2.

```
Mat 2345 —
Discrete
Math
```

```
Week 12
```

Week 12 Recursion

Practice

```
MergeSort
```

Complexit

Correctness

Loop Invariants Let n = 1. $n \log n = (1) \log(1) = 1(0) = 0$ But, T(n) is always positive, so this is not a good base case. Try a larger number.

T(2) = Time to divide+ time to MergeSort halves+ time to Merge= 1 + 1 + 1 + 2 = 5 $while <math>n \log n = 2 \log 2 = 2(1) = 2$ Can we find a constant c > 0 such that $5 \le 2c$? $\frac{5}{2} \le c$, so $\frac{5}{2}$ is a lower bound on c

	Inductive Hypothesis
	inductive Hypothesis
Mat 2345 — Discrete Math	
Week 12	
Week 12	
Recursion	
Practice	
MergeSort	Assume for some arbitrary $k \geq 2$ that $T(k) \leq ck \log k$
Complexity	
Correctness	
Loop Invariants	

	Inductive Step — Show $T(2k) \leq 2ck \log k + 2ck$
Mat 2345 — Discrete Math	
Week 12	
Week 12	$T(2k) \leq 1 + T(\lceil rac{2k}{2} ceil) + T(\lfloor rac{2k}{2} ceil) + 2k$
Recursion Practice	\leq T(k) + T(k) + 2k + 1
MergeSort	\leq 2T(k) + 2k + 1
Complexity Correctness	$\leq 2(ck\log k) + 2k + 1$
Loop Invariants	$\leq 2ck\log k + 2k + 1$

Inductive Step, Cont.

Mat 2345 -

Discrete Math Now, can we find a *c* such that Week 12 $2ck\log k + 2k + 1 \leq 2ck\log k + 2ck$ Week 12 2k + 1 < 2ck1 < 2ck - 2kMergeSort $1 \leq 2k(c-1)$ Since $k \ge 2$ from base case, $(c-1) \ge \frac{1}{4}$ or $c \ge \frac{5}{4}$ We had a lower bound of $\frac{5}{2}$, so we can choose c = 3.

Thus, $T(n) \in O(n \log n) \quad \forall n \geq 2$.

More on Complexity

Mat 2345 — Discrete Math

- Week 12
- Week 12 Recursion Practice MergeSort
- Complexity
- Correctness
- Loop Invariants

If an algorithm is composed of several parts, then its time complexity is the sum of the complexities of its parts.

• We must be able to **evaluate** these **summations**.

 Things become even more complicated when the algorithm contains loops, each iteration of which is a different complexity. An Example: Suppose $S_n = \sum_{i=1}^n i^2$

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion

Practice

MergeSor

Complexity

Correctness

Loop Invariants

• We saw
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{(n^2+n)}{2} \leq n^2$$
, and is, in fact, $\Theta(n^2)$

- So, we guess $\sum_{i=1}^{n} i^2 \leq \sum_{i=1}^{n} n^2 = n^3$. Maybe $S_n \in \Theta(n^3)$.
- We can prove our guess correct, and find the minimum constant of difference between S_n and n^3 by induction:

• Guess:
$$\sum_{i=1}^{n} i^2 = an^3 + bn^2 + cn + d = P(n)$$

• Notice that
$$\sum_{i=1}^{n+1} i^2 - \sum_{i=1}^n i^2 = (n+1)^2$$

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice MergeSort

Complexity

Correctness

Loop Invariants

So,
$$P(n+1) = P(n) + (n+1)^2$$

Thus,
 $a(n+1)^3 + b(n+1)^2 + c(n+1) + d =$
 $an^3 + bn^2 + cn + d + (n+1)^2$
 $a(n^3 + 3n^2 + 3n + 1) + b(n^2 + 2n + 1) + cn + c + d =$
 $an^3 + bn^2 + cn + d + n^2 + 2n + 1$

$$an^{3} + 3an^{2} + 3an + a + bn^{2} + 2bn + b + cn + c + d =$$

 $an^{3} + bn^{2} + cn + d + n^{2} + 2n + 1$

Mat 2345 -Hence: Discrete Math Week 12 $3an^2 + 3an + a + 2bn + b + c = n^2 + 2n + 1$, or $3an^2 + (3a + 2b)n + (a + b + c) = n^2 + 2n + 1$ Week 12 Since coefficients of the same power of *n* must be equal: MergeSort Complexity 3a = 1 (3a+2b) = 2 a+b+c = 1a = $\frac{1}{3}$ 3($\frac{1}{3}$) + 2b = 2 $\frac{1}{3}$ + $\frac{1}{2}$ + c = 1 2b = 1 $c = 1 - \frac{1}{2} - \frac{1}{2}$ $b = \frac{1}{2}$ $c = \frac{1}{6}$

And we can choose d = 0

Mat 2345 — Discrete	Hence,		
Math Week 12	P(n)	=	$\frac{1}{3}(n^3) + \frac{1}{2}(n^2) + \frac{1}{6}(n)$
Week 12			
Recursion		=	$\frac{2}{6}(n^3) + \frac{3}{6}(n^2) + \frac{1}{6}(n)$
Practice			
MergeSort			$\frac{(2n^3+3n^2+n)}{6}$
Complexity		=	6
Correctness			(2, 2, 2, +1)
Loop Invariants		=	$\frac{n(2n^2+3n+1)}{6}$
		=	$\frac{n(n+1)(2n+1)}{6}$

Now, we wish to prove $S_n \in \Theta(n^3)$, or, that S_n is a third degree polynomial, by induction.

Base Case

Mat 2345 — Discrete Math

Week 12

Week 12

Recursion

Practice

MergeSort

Complexity

Correctness

Loop Invariants

Let
$$n = 1$$

I

hs:
$$\sum_{i=1}^{1} i^2 = 1^2 = 1$$

rhs:
$$P(1) = \frac{1(1+1)(2(1)+1)}{6} = \frac{1(2)(3)}{6} = \frac{6}{6} = 1 \quad \checkmark$$

Inductive Hypothesis Mat 2345 — Discrete Math Week 12 Week 12 Assume for some arbitrary $k \ge 1$, that $S_k = P(k)$ MergeSort That is, $\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$ Complexity

Inductive Step

Mat 2345 — Discrete Math Week 12

Week 12

Complexity

lhs = S_{k+1} = $S_k + (k+1)^2$ defn of Σ $= \frac{k(k+1)(2k+1)}{\epsilon} + (k+1)^2$ IH & subst. $= \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$ Alg. Man. $\frac{(k+1)[k(2k+1) + 6(k+1)]}{\epsilon}$ = Alg. Man. $\frac{(k+1)(2k^2+k+6k+6)}{6}$ = Alg. Man. $\frac{(k+1)(2k^2+7k+6)}{6}$ = Alg. Man. $\frac{(k+1)(k+2)(2k+3)}{6} = rhs \sqrt{2}$ Alg. Man.

Show $S_{k+1} = P(k+1) = \frac{(k+1)(k+2)(2k+3)}{6}$

Thus, $S_n = P(n) \quad \forall n \ge 1$ Hence, $S_n \in \Theta(n^3)$

Section 4.5 — Program Correctness

Mat 2345 — Discrete Math

- Week 12
- Week 12 Recursion Practice
- Complexity
- Correctness
- Loop Invariants

- A brief introduction to the area of program verification, tying together the rules of logic, proof techniques, and the concept of an algorithm.
 - Program verification means to prove the correctness of the program.
 - Why is this important? Why can't we merely run testcases?
 - A program is said to be correct if it produces the correct output for every possible input.

Correctness Proof

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice

MergeSort

Complexity

Correctness

Loop Invariants A correctness proof for a program consists of **two parts**:

1. Establish the partial correctness of the program. If the program terminates, then it halts with the correct answer.

2. Show that the program always terminates.

Proving Output Correct

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice MergeSort Complexity

Correctness

Loop Invariants We need two propositions to determine what is meant by produce the correct output.

- Initial Assertion: the properties the input values must have.
 (p)
- 2. Final Assertion: the properties the output of the program should have if the program did what was intended. (q)

A program segment S is said to be partially correct with respect to p and q, $[p \{S\} q]$, if — whenever p is TRUE for the input values of S and S terminates, then q is TRUE for the output values of S.

Example

Mat 2345 — Discrete Math Week 12	p :	x = 1	<pre>// initial assertion</pre>
Week 12		y = 2	// segment
Recursion		у —	
Practice		z = x + y	// 5
MergeSort			
Complexity	q :	z = 3	// final assertion
Correctness			
Loop Invariants		Is [p -	{ <i>S</i> } <i>q</i>] TRUE?

Composition Rule: $[p \{S_1\} q]$ and $[q \{S_2\} r] \rightarrow [p \{S_1; S_2\} r]$

Rules of Inference: Conditional Statements

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice MergeSort Complexity Correctness

Loop Invariants

IF condition THEN block

BLOCK is executed when **condition** is TRUE, and it is not executed when **condition** is FALSE.

To verify correctness with respect to p and q, we must show:

- 1. When *p* is TRUE and condition is also TRUE, then *q* is TRUE after BLOCK terminates.
- 2. When *p* is TRUE and **condition** is FALSE, *q* is TRUE (since BLOCK does not execute.

This leads to the following rule of inference:

 $\begin{array}{l} [(p \land condition) \{ block \} q \quad \text{and} \quad (p \land \neg condition) \rightarrow q] \\ \rightarrow p \{ \textit{if condition then block} \} q \end{array}$

Exampl	le
--------	----

Mat 2345 — Discrete Math						
Week 12						
	р:	none				
Week 12	-					
Recursion		· c \	. .		// a	-
Practice		if x > y	tnen y	= x	// 50	egment
MergeSort						
Complexity	q :	y >= x				
Correctness						
Loop						
Invariants						

Is $[p \{S\} q]$ TRUE?

IF...THEN...ELSE Statements

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice MergeSort

Correctness

Loop Invariants

IF condition THEN block1 ELSE block2

If condition is TRUE, then block1 executes; if condition is FALSE, then block2 executes.

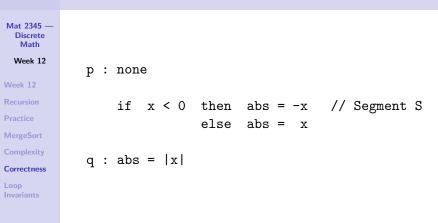
To verify correctness with respect to p and q, we must show:

- 1. When *p* is TRUE and **condition** is also TRUE, then *q* is TRUE after BLOCK1 terminates.
- 2. When *p* is TRUE and condition is FALSE, *q* is TRUE after BLOCK2 terminates.

This leads to the following rule of inference:

 $\begin{array}{ll} [(p \land condition) \{ block1 \} q & \text{and} & (p \land \neg condition) \{ block2 \} q] \\ & \rightarrow p \{ if \ condition \ then \ block1 \ else \ block2 \} q \end{array}$

Example



Is $[p \{S\} q]$ TRUE? I.e., is the segment correct?

Loop Invariants — While Loops

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice MergeSort Complexity

Correctness

Loop Invariants

WHILE condition block

Where **BLOCK** is repeatedly executed until condition becomes FALSE.

Loop Invariant: an assertion that remains TRUE **each** time BLOCK is executed.

I.e., p is a loop invariant if $(p \land condition) \{ block \} p$ is TRUE

Let p be a loop invariant.

If p is TRUE before Segment S is executed, then p and \neg condition are TRUE after the loop terminates (if it does). Hence: $(p \land condition){S}p$

 \therefore *p*{*while condition S*}(¬*condition* \land *p*)

Example

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice MergeSort

Complexity

Correctness

Loop Invariants We wish to verify the following code segment terminates with factorial = n! when n is a positive integer.

```
Our loop invariant p is: factorial = i! and i \leq n
```

```
i = 1
factorial = 1
while i < n {
    i = i + 1
    factorial = factorial * i
}</pre>
```

Mat 2345 — Discrete Math

Week 12

Recursion Practice MergeSort

Week 12

Complexity

Correctness

Loop Invariants [Base Case] p is TRUE before we enter the loop since factorial = 1 = 1!, and $1 \le n$.

[Inductive Hypothesis] Assume for some arbitrary $k \ge 1$ that p is TRUE. Thus i < k (so we enter the loop again), and factorial= (i-1)!.

[Inductive Step] Show p is still TRUE after execution of the loop. Thus $i \le k$ and factorial = i!.

Mat 2345 — Discrete Math

Week 12

Week 12 Recursion Practice

MergeSort

Complexity

Correctness

Loop Invariants First, i is incremented by 1

Thus $i \leq k$ since we assumed i < k, and i and $k \geq 1$.

Also, factorial, which was (i - 1)! by IH, is set to (i - 1)! * i = i!

Hence, p remains true.

Since p remains TRUE, p is a loop invariant and thus the assertion:

 $[p \land (i < n)]{S}p$ is true

It follows that the assertion:

 $p\{while \ i < n \ S\}[(i \ge n) \land p] \text{ is also true.}$

Mat 2345 -Discrete Math

Week 12

Week 12

Loop Invariants Furthermore, the loop terminates after n-1 iterations with i = n, since:

2. 1 is added to *i* during each iteration of the loop, and

1. *i* is assigned the value 1 at the beginning of the program,

3. the loop terminates when i > n

```
Thus, at termination, factorial = n!.
```

We split larger segments of code into component parts, and use the rule of composition to build the correctness proof.

$$(p = p_1)\{S_1\}q_1, q_1\{S_2\}q_2, \ldots, q_{n-1}\{S_n\}(q_n = q) \rightarrow p\{S_1; S_2; \ldots; S_n\}q$$