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Student Responsibilities — Week 12

Reading: Textbook, Section 4.4 & 4.5

Assignments:

Sec 4.4 8, 10, 24, 28
Sec 4.5 2, 4, 7, 12

Attendance: Frostily Encouraged

Week 12 Overview

Sec 4.4. Recursive Algorithms

Sec 4.5. Program Correctness
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Section 4.4 Recursive Algorithms

A recursive procedure to find the max in a non–empty list.

We will assume we have built–in functions:

Length() — which returns the number of elements in the list

Max() — which returns the larger of two values

Listhead() — which returns the first element in a list

Note: Max() requires one comparison
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procedure Maxlist(...list...){

// PRE: list is not empty

// POST: returns the largest element in list

// strip off list head and pass on the remainder

if Length(list) is 1 then

return Listhead(list)

else

return Max(Listhead(list),

Maxlist(remainder_of_list))

}

What happens with the list {29}?
With the list {3, 8, 5}?
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How Many Comparisons?

The recurrence equation for the number of comparisons
required for a list of length n, C (n) is:

C (1) = 0 the initial condition

C (n) = 1 + C (n − 1) the recurrence equation

So, C (n) ∈ O(n) as we would expect
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A Variant of Maxlist()

Assuming the list length is a power of 2, here is a variant of
Maxlist() using a Divide–and–Conquer approach.

Divide the list in half, and find the maximum of each half

Find the Max() of the maximum of the two halves

Apply these steps to each list half recursively.

What could the base case(s) be?
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Maxlist2() Algorithm

procedure Maxlist2(...list...){

// PRE: list is not empty

// POST: returns the largest element in list

// Divide list into two lists, take the max of

// the two halves (recursively)

if Length(list) is 1 then

return Listhead(list)

else

a = Maxlist2(first half of list)

b = Maxlist2(second half of list)

return Max(a, b)

}

What happens with the list {29, 7}?
With the list {3, 8, 5, 7}?
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How Many Comparisons in Maxlist2()?

There are two calls to Maxlist2(), each of which requires
C (n2 ) operations to find maximum.

One comparison is required by the Max() function

The recurrence equation for the number of comparisons
required for a list of length n, C (n), is:

C (1) = 0 the initial condition
c(n) = 2C (n2 ) + 1 the recurrence equation
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Consider A Sampling

n C (n) = 2C (n2 ) + 1

20 = 1 1 = 21 − 1

21 = 2 3 = 22 − 1

22 = 4 7 = 23 − 1

23 = 8 15 = 24 − 1

24 = 16 31 = 25 − 1
...

...

2log n = n 2log(n)+1 − 1 = 2n − 1 ∈ O(n)

Thus, C (n) = 2log(n)+1 − 1 ∈ O(n)
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Practice I: Prove 3n2 + 5n + 4 ∈ O(n2)

Definition of Big–Oh: f (n) ∈ O(g(n)) if there exists positive
constants c and N0 such that ∀ n ≥ N0 we have f (n) ≤ cg(n)

We need to find c > 0 and N0 > 0 such that:

3n2 + 5n + 4 ≤ cn2 ∀n ≥ N0

We note that

3n2 + 5n + 4 ≤ 3n2 + 5n2 + 4n2, when n > 0
≤ 12n2

and we can choose c = 12



Mat 2345 —
Discrete

Math

Week 12

Week 12

Recursion

Practice

MergeSort

Complexity

Correctness

Loop
Invariants

Practice I, Cont.

To find N0: 3n2 + 5n + 4 = 12n2

0 = 9n2 − 5n − 4

when n = 1, 9(1)2 − 5(1)− 4 = 9− 5− 4 = 0

Thus, 3n2 + 5n + 4 ≤ 12n2 ∀ n ≥ 1, and
therefore, 3n2 + 5n + 4 ∈ O(n2)
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Practice II.
Given T (n) = 2n − 1, prove that T (n) ∈ O(n)

Practice III.
Prove that T (n) = 3n + 2 if

T (n) =

{
2 n = 0
3 + T (n − 1) n > 0



Mat 2345 —
Discrete

Math

Week 12

Week 12

Recursion

Practice

MergeSort

Complexity

Correctness

Loop
Invariants

MergeSort Algorithm

list MergeSort(list[1..n]){

// PRE: none

// POST: returns list[1..n] in sorted order

// Functional dependency: Merge()

if n is 0

return an empty list

else if n is 1

return list[1]

else {

list A = MergeSort(list[1..n/2])

list B = MergeSort(list[n/2 + 1..n])

list C = Merge(A, B)

return C

}

}



Mat 2345 —
Discrete

Math

Week 12

Week 12

Recursion

Practice

MergeSort

Complexity

Correctness

Loop
Invariants

Time Complexity of MergeSort()

Prove by induction that the time complexity of MergeSort(),
T (n) ∈ O(n log n)

What we need to do:

Establish a Base Case for some small n

Prove T (k) ≤ cf (k)→ T (2k) ≤ cf (2k)

In particular, we need to prove ∀k ≥ N0 that:

T (k) ≤ ck log k → T (2k) ≤ c2k log(2k)
= c2k(log 2 + log k)
= c2k log k + c2k

where k = 2m for some m ≥ 0, wlog∗

∗without loss of generality
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Base Case

Let n = 1.
n log n = (1) log(1) = 1(0) = 0
But, T (n) is always positive, so this is not a good base case.
Try a larger number.

Let n = 2.
T (2) = Time to divide

+ time to MergeSort halves
+ time to Merge

= 1 + 1 + 1 + 2 = 5

while n log n = 2 log 2 = 2(1) = 2

Can we find a constant c > 0 such that 5 ≤ 2c?

5
2 ≤ c , so 5

2 is a lower bound on c
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Inductive Hypothesis

Assume for some arbitrary k ≥ 2 that T (k) ≤ ck log k
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Inductive Step — Show
T (2k) ≤ 2ck log k + 2ck

T (2k) ≤ 1 + T (d2k2 e) + T (b2k2 c) + 2k

≤ T (k) + T (k) + 2k + 1

≤ 2T (k) + 2k + 1

≤ 2(ck log k) + 2k + 1

≤ 2ck log k + 2k + 1
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Inductive Step, Cont.

Now, can we find a c such that

2ck log k + 2k + 1 ≤ 2ck log k + 2ck

2k + 1 ≤ 2ck

1 ≤ 2ck − 2k

1 ≤ 2k(c − 1)

Since k ≥ 2 from base case, (c − 1) ≥ 1
4 or c ≥ 5

4

We had a lower bound of 5
2 , so we can choose c = 3.

Thus, T (n) ∈ O(n log n) ∀ n ≥ 2.
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More on Complexity

If an algorithm is composed of several parts, then its time
complexity is the sum of the complexities of its parts.

We must be able to evaluate these summations.

Things become even more complicated when the algorithm
contains loops, each iteration of which is a different
complexity.
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An Example: Suppose Sn =
∑n

i=1 i
2

We saw
∑n

i=1 i = n(n+1)
2 = (n2+n)

2 ≤ n2, and is, in fact,
Θ(n2)

So, we guess
∑n

i=1 i
2 ≤

∑n
i=1 n

2 = n3. Maybe
Sn ∈ Θ(n3).

We can prove our guess correct, and find the minimum
constant of difference between Sn and n3 by induction:

Guess:
∑n

i=1 i
2 = an3 + bn2 + cn + d = P(n)

Notice that
∑n+1

i=1 i2 −
∑n

i=1 i
2 = (n + 1)2
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So, P(n + 1) = P(n) + (n + 1)2

Thus,

a(n + 1)3 + b(n + 1)2 + c(n + 1) + d =

an3 + bn2 + cn + d + (n + 1)2

a(n3 + 3n2 + 3n + 1) + b(n2 + 2n + 1) + cn + c + d =

an3 + bn2 + cn + d + n2 + 2n + 1

an3 + 3an2 + 3an + a + bn2 + 2bn + b + cn + c + d =

an3 + bn2 + cn + d + n2 + 2n + 1
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Hence:

3an2 + 3an + a + 2bn + b + c = n2 + 2n + 1, or

3an2 + (3a + 2b)n + (a + b + c) = n2 + 2n + 1

Since coefficients of the same power of n must be equal:

3a = 1 (3a+2b) = 2 a + b + c = 1

a = 1
3 3( 1

3 ) + 2b = 2 1
3 + 1

2 + c = 1

2b = 1 c = 1 - 1
3 - 1

2

b = 1
2 c = 1

6

And we can choose d = 0
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Hence,

P(n) = 1
3(n

3) + 1
2(n

2) + 1
6(n)

= 2
6(n

3) + 3
6(n

2) + 1
6(n)

= (2n3+3n2+n)
6

= n(2n2+3n+1)
6

= n(n+1)(2n+1)
6

Now, we wish to prove Sn ∈ Θ(n3), or, that Sn is a third
degree polynomial, by induction.
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Base Case

Let n = 1

lhs:
∑1

i=1 i
2 = 12 = 1

rhs: P(1) = 1(1+1)(2(1)+1)
6 = 1(2)(3)

6 = 6
6 = 1

√
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Inductive Hypothesis

Assume for some arbitrary k ≥ 1, that Sk = P(k)

That is,
∑k

i=1 i
2 = k(k+1)(2k+1)

6
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Inductive Step

Show Sk+1 = P(k + 1) = (k+1)(k+2)(2k+3)
6

lhs = Sk+1 = Sk + (k + 1)2 defn of
∑

= k(k+1)(2k+1)
6 + (k + 1)2 IH & subst.

= k(k+1)(2k+1) + 6(k+1)2

6 Alg. Man.

= (k+1)[k(2k+1) + 6(k+1)]
6 Alg. Man.

= (k+1)(2k2+k+6k+6)
6 Alg. Man.

= (k+1)(2k2+7k+6)
6 Alg. Man.

= (k+1)(k+2)(2k+3)
6 = rhs

√
Alg. Man.

Thus, Sn = P(n) ∀ n ≥ 1

Hence, Sn ∈ Θ(n3)
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Section 4.5 — Program Correctness

A brief introduction to the area of program verification, tying
together the rules of logic, proof techniques, and the
concept of an algorithm.

Program verification means to prove the correctness of the
program.

Why is this important? Why can’t we merely run testcases?

A program is said to be correct if it produces the correct
output for every possible input.



Mat 2345 —
Discrete

Math

Week 12

Week 12

Recursion

Practice

MergeSort

Complexity

Correctness

Loop
Invariants

Correctness Proof

A correctness proof for a program consists of two parts:

1. Establish the partial correctness of the program.
If the program terminates, then it halts with the correct
answer.

2. Show that the program always terminates.
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Proving Output Correct

We need two propositions to determine what is meant by
produce the correct output.

1. Initial Assertion: the properties the input values must have.
( p )

2. Final Assertion: the properties the output of the program
should have if the program did what was intended. ( q )

A program segment S is said to be
partially correct with respect to p and q, [p {S} q],

if — whenever p is true for the input values of S
and S terminates, —

then q is true for the output values of S .
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Example

p : x = 1 // initial assertion

y = 2 // segment

z = x + y // S

q : z = 3 // final assertion

Is [p {S} q] true?

Composition Rule: [p {S1} q] and [q {S2} r ] → [p {S1;S2} r ]
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Rules of Inference: Conditional Statements

IF condition THEN block

block is executed when condition is true, and it is not
executed when condition is false.

To verify correctness with respect to p and q, we must show:

1. When p is true and condition is also true, then q is true
after block terminates.

2. When p is true and condition is false, q is true (since
block does not execute.

This leads to the following rule of inference:

[(p ∧ condition){block}q and (p ∧ ¬condition)→ q]
→ p{if condition then block}q
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Example

p : none

if x > y then y = x // Segment S

q : y >= x

Is [p {S} q] true?
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IF...THEN...ELSE Statements

IF condition THEN block1 ELSE block2

If condition is true, then block1 executes;
if condition is false, then block2 executes.

To verify correctness with respect to p and q, we must show:

1. When p is true and condition is also true, then q is true
after block1 terminates.

2. When p is true and condition is false, q is true after
block2 terminates.

This leads to the following rule of inference:

[(p ∧ condition){block1}q and (p ∧ ¬condition){block2}q]
→ p{if condition then block1 else block2}q
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Example

p : none

if x < 0 then abs = -x // Segment S

else abs = x

q : abs = |x|

Is [p {S} q] true?
I.e., is the segment correct?
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Loop Invariants — While Loops

WHILE condition block

Where block is repeatedly executed until condition becomes
false.

Loop Invariant: an assertion that remains true each time
block is executed.

I.e., p is a loop invariant if (p ∧ condition){block}p is true

Let p be a loop invariant.

If p is true before Segment S is executed, then p and
¬condition are true after the loop terminates (if it does).

Hence: (p ∧ condition){S}p
∴ p{while condition S}(¬condition ∧ p)
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Example

We wish to verify the following code segment terminates with
factorial = n! when n is a positive integer.

Our loop invariant p is: factorial = i! and i ≤ n

i = 1

factorial = 1

while i < n {

i = i + 1

factorial = factorial * i

}
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[Base Case] p is true before we enter the loop since
factorial = 1 = 1!, and 1 ≤ n.

[Inductive Hypothesis] Assume for some arbitrary k ≥ 1
that p is true. Thus i < k (so we enter the loop again),
and factorial= (i-1)!.

[Inductive Step] Show p is still true after execution of the
loop. Thus i ≤ k and factorial = i!.
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First, i is incremented by 1

Thus i ≤ k since we assumed i < k, and i and k ≥ 1.

Also, factorial, which was (i − 1)! by IH, is set to
(i − 1)! ∗ i = i !

Hence, p remains true.

Since p remains true, p is a loop invariant and thus the
assertion:

[p ∧ (i < n)]{S}p is true

It follows that the assertion:
p{while i < n S}[(i ≥ n) ∧ p] is also true.
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Furthermore, the loop terminates after n − 1 iterations with
i = n, since:

1. i is assigned the value 1 at the beginning of the program,

2. 1 is added to i during each iteration of the loop, and

3. the loop terminates when i ≥ n

Thus, at termination, factorial = n!.

We split larger segments of code into component parts, and
use the rule of composition to build the correctness proof.

(p = p1){S1}q1, q1{S2}q2, . . . , qn−1{Sn}(qn = q) →
p{S1;S2; . . . ;Sn}q
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