
MAT 3670: Lab 3
Bits, Data Types, and Operations

Background

In previous labs, we have used Turing machines to manipulate bit strings. In this lab, we will
continue to focus on bit strings, placing more emphasis on the interpretation of these strings, as
explained in Chapter 2 of our text.

Although Turing machines could be used for this week’s lab exercises, you would probably agree
that the design of these machines would be somewhat complicated, even though the algorithms
themselves are fairly basic. To make life simpler, we will use a different way to implement these
algorithms.

All of the algorithms for this lab are to be implemented in Java. Our goal is to experiment
with and build various operations on bit strings. Thus, we will be building our bit string class from
scratch.

Pre-Lab Exercises

During lab, you will be asked to implement many of the methods needed for a class that represents
bit strings. To prepare yourself for this activity, do the following before this week’s lab:

• Review all code from BitString.java.

• Read and understand what is required for the incomplete methods.

• Provide pseudo-code for each of the incomplete methods.

• As time allows, create implementations based on your pseudo-code. Do not use Integer,
BitSet, or any other Java class to implement the missing methods. You may use the Math

Class.

Laboratory Exercises

1. Descend to your 3670 directory; create a lab3 directory to store the files you will create
for this lab. Download BitString.java from the course website and place it in your lab3
directory.

2. Open BitString.java with your favorite Java editor (such as NetBeans).

3. Provide implementations for the incomplete methods.

4. Add a main method for testing your methods.

Submissions

When you have completed the lab, submit your lab3 folder by dragging it onto the EIU submission
icon.

Mathematics 3670: Lab 3 2

Contents of BitString.java

1 import java.util.Arrays;

2
3 /**

4 * This class implements an inefficient fixed size mutable binary string. The

5 * bits of a BitString are indexed by non-negative integers. Individual bits

6 * can be examined, set (made true), cleared (made false), or flipped (set to

7 * the opposite value). The logical AND, logical inclusive OR, and and other

8 * operations can be used to combine two BitStrings of the same size and to

9 * manipulate BitStrings. By default, all bits in the string initially are

10 * false. Unlike text strings, bit strings indexes increase from right to left

11 * i.e. the most significant bits have larger indexes. Do not use Integer,

12 * BitSet, or any other Java class to implement the missing methods. You may use

13 * the Math Class.

14 */

15 public class BitString implements Cloneable {

16 // An array to hold the bits that make up the bit string.

17 private boolean bits[];

18 /**

19 * A constant that defines the size of the default bit string.

20 */

21 public static final int DEFAULT_SIZE = 8;

22
23 /**

24 * Creates a new, all false, bit string of the given size.

25 */

26 public BitString(int size) {

27 if(size < 1) throw new IllegalArgumentException("Size must be positive");

28 bits = new boolean[size];

29 }

30
31 /**

32 * Creates a new all false bit string of size DEFAULT_SIZE.

33 */

34 public BitString() {

35 this(DEFAULT_SIZE);

36 }

37
38 /**

39 * Creates a new bit string from the give text string of ones and zeros.

40 */

41 public BitString(String s) {

42 this(s.length());

43 //Read string from right to left

44 int index = s.length() - 1;

45 for (char digit : s.toCharArray())

46 {

47 switch(digit)

48 {

49 case ’0’:

50 bits[index] = false;

51 break;

52 case ’1’:

53 bits[index] = true;

54 break;

55 default:

Mathematics 3670: Lab 3 3

56 throw new IllegalArgumentException("String " + s +

57 "may only contain 0’s and 1’s.");

58 }

59 --index;

60 }

61 }

62
63 /**

64 * Creates a copy of the given bit string.

65 */

66 @Override

67 public Object clone() {

68 BitString copy = new BitString(bits.length);

69 copy.bits = Arrays.copyOf(bits, bits.length);

70 return copy;

71 }

72
73 /**

74 * Returns a representation of this BitString as a string of 1’s and 0’s.

75 */

76 @Override

77 public String toString() {

78 StringBuilder out = new StringBuilder(bits.length);

79
80 // For each bit append either a 1 or a 0 to out. Note that we are going

81 // from large indexes to small as the most significant bits have larger

82 // indexes.

83 for (int index = bits.length - 1; index >= 0; --index) {

84 out.append(bits[index] ? 1 : 0);

85 }

86
87 return out.toString();

88 }

89
90 /**

91 * Return the value of a bit string at the given index.

92 */

93 public boolean get(int index) {

94 return bits[index];

95 }

96
97 /**

98 * Set the value of a bit string at the given index to true.

99 */

100 public void set(int index) {

101 bits[index] = true;

102 }

103
104 /**

105 * Set the value of a bit string at the given index to false.

106 */

107 public void clear(int index) {

108 bits[index] = false;

109 }

110
111 /**

112 * Set the value of a bit string at the given index to the opposite value.

Mathematics 3670: Lab 3 4

113 */

114 public void flip(int index) {

115 bits[index] = !bits[index];

116 }

117
118 /**

119 * Returns the number of bits in this bit string.

120 */

121 public int size() {

122 return bits.length;

123 }

124
125 /**

126 * Returns the number of true bits.

127 */

128 public int populationCount() {

129 int count = 0;

130
131 // For each true bit increment count.

132 for (boolean bit : bits) {

133 if (bit) {

134 ++count;

135 }

136 }

137
138 return count;

139 }

140
141 @Override

142 public int hashCode() {

143 int hash = 5;

144 hash = 29 * hash + Arrays.hashCode(this.bits);

145 return hash;

146 }

147
148 /**

149 * Two bit strings are equal if they have the same size and same bits.

150 */

151 @Override

152 public boolean equals(Object obj) {

153 if (!(obj instanceof BitString)) {

154 throw new IllegalArgumentException("obj must be a BitString");

155 }

156
157 return Arrays.equals(bits, ((BitString) obj).bits);

158 }

159
160 /**

161 * An object factory method that creates a bit string corresponding to the

162 * non-negative decimal value n, using size bits. If size is too small to

163 * hold n an InsuffisantNumberOfBitsException is thrown.

164 */

165 public static BitString decimalToUnsigned(int n, int size) {

166 throw new UnsupportedOperationException("This function needs to be completed!");

167 }

168
169 /**

Mathematics 3670: Lab 3 5

170 * Turns the bit string into its binary successor. For example, the successor

171 * of 101011 is 101100. Returns reference to self for object chains.

172 */

173 public BitString successor() {

174 throw new UnsupportedOperationException("This function needs to be completed!");

175 }

176
177 /**

178 * Turns bit string into its binary complement. For example, the complement of

179 * 101011 is 010100. Returns reference to self for object chains.

180 */

181 public BitString complement() {

182 throw new UnsupportedOperationException("This function needs to be completed!");

183 }

184
185 /**

186 * Turns bit string into its two’s complement. For example, the two’s

187 * complement of 101011 is 010101. Returns reference to self for object

188 * chains.

189 */

190 public BitString twosComplement() {

191 throw new UnsupportedOperationException("This function needs to be completed!");

192 }

193
194 /**

195 * Returns the value of this bit string when interpreted as an unsigned

196 * decimal. For example, the string 111 has unsigned value 7.

197 */

198 public int unsignedValue() {

199 throw new UnsupportedOperationException("This function needs to be completed!");

200 }

201
202 /**

203 * Returns the value of this bit string when interpreted as a signed

204 * decimal with the MSB being the sign bit. For example, the string 111 has

205 * unsigned value -3.

206 */

207 public int signedValue() {

208 throw new UnsupportedOperationException("This function needs to be completed!");

209 }

210
211 /**

212 * Returns the value of this bit string when interpreted as a decimal in

213 * one’s complement form. For example, in one’s complement form the string

214 * 111 has the value 0.

215 */

216 public int onesComplementValue() {

217 throw new UnsupportedOperationException("This function needs to be completed!");

218 }

219
220 /**

221 * Returns the value of this bit string when interpreted as a decimal in

222 * two’s complement form. For example, in two’s complement form the string

223 * 111 has the value -1.

224 */

225 public int twosComplementValue() {

226 throw new UnsupportedOperationException("This function needs to be completed!");

Mathematics 3670: Lab 3 6

227 }

228
229 /**

230 * Performs binary addition on bit strings of the same size. If they are

231 * not of the same size then a BitSizeMismatchException is thrown. Does not

232 * change the receiver.

233 */

234 public BitString add(BitString rightSummand) {

235 throw new UnsupportedOperationException("This function needs to be completed!");

236 }

237
238 /**

239 * Performs binary subtraction on bit strings of the same size. If they are

240 * not of the same size then a BitSizeMismatchException is thrown. Does not

241 * change the receiver.

242 */

243 public BitString subtract(BitString subtrahend) {

244 throw new UnsupportedOperationException("This function needs to be completed!");

245 }

246
247 /**

248 * Performs "logical and" on bit strings of the same size. If they are

249 * not of the same size then a BitSizeMismatchException is thrown. Does not

250 * change the receiver.

251 */

252 public BitString logicalAnd(BitString operand) {

253 throw new UnsupportedOperationException("This function needs to be completed!");

254 }

255
256 /**

257 * Performs "logical inclusive or" on bit strings of the same size. If they

258 * are not of the same size then a BitSizeMismatchException is thrown. Does not

259 * change the receiver.

260 */

261 public BitString logicalOr(BitString operand) {

262 throw new UnsupportedOperationException("This function needs to be completed!");

263 }

264
265 /**

266 * Performs a left shift by the given non negative amount. For example, the

267 * left shift of 01101 by 2 is 10100. Returns reference to self for object

268 * chains.

269 */

270 public BitString leftShift(int amount) {

271 throw new UnsupportedOperationException("This function needs to be completed!");

272 }

273
274 /**

275 * Performs a sign extension by the given non negative amount. For example,

276 * the extension of 10101 by 2 is 1110101. Returns reference to self for object

277 * chains.

278 */

279 public BitString signExtension(int amount) {

280 throw new UnsupportedOperationException("This function needs to be completed!");

281 }

282
283 /**

Mathematics 3670: Lab 3 7

284 * A run time exception that should be thrown whenever a method does not have

285 * enough bits to successfully execute.

286 */

287 public static class InsuffisantNumberOfBitsException extends RuntimeException {}

288
289 /**

290 * A run time exception that should be thrown whenever two bit strings should

291 * be of the same size but are not.

292 */

293 public static class BitSizeMismatchException extends RuntimeException {}

294 }

