
MAT 3670: Lab 4
Digital Logic Structures — Part I

Background

This lab will give you a chance to design and simulate some digital logic circuits, using a digital
design tool known as Logisim1. This software allows you to draw diagrams representing logic
circuits and, more importantly, verify the designs operate as intended. It’s also fun to use!

Pre-Lab Exercises

Read all of the laboratory exercises to understand what you will be asked to do in the lab. It is to
your advantage to produce “paper designs” of all circuits before arriving at the lab2.

Laboratory Exercises

1. Create a lab4 directory to store the files (circuits) you will create for this lab.

2. Launch Logisim by clicking on the OR gate icon, found on the OS X dock.

3. Familiarize yourself with the icons on the Logisim toolbar. If you move your mouse over
each icon you will see a brief hint as to its purpose. These tools will allow you to create
gates (NOT, AND, OR), add input and output pins, add wires, edit circuit components, and
change logic values. You can also use the text tool to annotate your diagrams. There are
many other possibilities, but these are the most basic ones.

4. Open the Help menu. Read and follow the steps described in the tutorial. By doing this,
you will create an XOR gate made up of two AND gates, two NOT gates, and an OR gate.
The mathematical basis for this circuit is the following:

x XOR y = xy + xy

5. After you have completed and tested your design, save your work in lab4-xor.circ. Your
design will look similar to the one shown in Figure 1.

6. Knowing these basics of Logisim, you can create and test many digital logic circuits. However,
if you want to build larger circuits, knowing about subcircuits is very helpful. Subcircuits
allow us to construct basic “building blocks” which can simplify the design task. To find out
how to design and use subcircuits, read and follow the steps in the “Subcircuits” section of the
tutorial. You will end up with a 4-to-1 multiplexor, which should be saved in lab4-mux.circ.

7. Test the MUX you just created as follows. Set exactly one of the input lines to 1. Then cycle
through all four bit patterns for the two “select” lines, ensuring that the output is correct in
each case. Repeat this process for a total of four times, each time allowing exactly one input
line to be 1. By doing this, you will have tested 16 different possibilities. An exhaustive test
would require 26 or 64 cases.

1Logisim is open-source software. If you wish to download a copy for your own computer, see http://ozark.

hendrix.edu/~burch/logisim/.
2Hmmm; think before coding? Think before designing circuits! In addition, some artistic skill is needed to obtain

pleasing diagrams.



Mathematics 3670: Lab 4 2

Figure 1: Implementation of XOR with fundamental gates.

incrCout

A

Cin

S

A Cin S Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 2: One-bit slice incrementer. On the left is a “black box” view; to the right is its definition
via a truth table.

8. Create a new sub-circuit which will perform 1-bit incrementation. Viewed as a “black box,”
there are two inputs: A, and Cin, and two outputs, S and Cout. Our intention is to perform
one slice of a multi-bit incrementation. Figure 2 provides both a “black box” view and a
truth table definition.

Determine a sum of products form for each of the two outputs, S and Cout, then implement
this as a sub-circuit. Test your sub-circuit to ensure it matches the definining truth table,
then construct a circuit with four of these slices which will increment a 4-bit quantity. Test
your design by trying all possible inputs.

9. Using Figure 3 as a guide, show how a circuit can be constructed to increment a 4-bit quantity.
Test your design by trying all possible inputs. Save your circuit in lab4-incr.circ.

incr incr incrincr 1

A3 A2 A1 A0

S2S3 S1 S0

Figure 3: Four slices of a one-bit incrementer. The leftmost carry-out can be ignored.



Mathematics 3670: Lab 4 3

10. A full adder is a logic circuit that adds three 1-bit binary values, X, Y , and Cin, to form a
2-bit result consisting of a sum S and a carry Cout. The truth table corresponding to a full
adder is as follows:

Inputs Outputs

X Y Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Write a sum of products form expression for Cout and S. Using these Boolean expressions,
design a sub-circuit which will perform one-bit addition. Using the truth table as a guide,
test your design.

11. Using the one-bit adder sub-circuit, design a 4-bit adder. Test some representative inputs.
If you wanted to perform an exhaustive test, how many different inputs would you need to
verify? Save your circuit in lab4-add4.circ.

12. Your final task is to implement both subtraction and addition in a single circuit, following
the hints in Exercise 3.24. Your circuit will be similar to the 4-bit adder circuit, but you
will now need an additional input line M which will serve as a mode bit: when M = 0, your
new circuit should behave like an adder, producing A + B; when M = 1, the circuit should
perform subtraction, yielding A−B. Assume both A and B use a two’s complement system.
Test your design. Save your circuit in lab4-addsub4.circ.

Submissions

When you have completed the lab, submit your lab4 folder by dragging it onto the EIU submit
icon.


