
MAT 3670: Lab 6
Introduction to the LC-3 Computer

Background

This lab introduces ideas related to the von Neumann1 model and the LC-3 instruction set. The
information found in Chapter 5 and summarized in Appendix A will be needed to complete this
lab.

Our first experience programming the LC-3 computer is going to be at a low level, using
machine instructions. Each instruction of the LC-3 is a 16-bit quantity — typically expressed as
a 4-digit hexadecimal value or as a 16-digit binary value. A complete program is simply a sequence
of 16-bit values. As you can imagine, while this is convenient for the hardware, it is much less so
for people — we need to be especially careful, since making an error involving a single bit is easy
to do.

Pre-Lab Exercises

1. A very small program for the LC-3 is shown in Figure 1. This program takes up just nine
words of memory, beginning at x3000. In order to understand what each instruction of this
program will do, we need to first view each 4-digit hexadecimal value as a 16-bit quantity,
then consult Appendix A to determine the operation, operands, and instruction semantics.
This has been done for a few instructions. Check these to test your understanding, then
complete the table for the remaining entries.

2. Repeat Exercise 1 for a second LC-3 program, given in Figure 2.

3. If you want to get a head start on the lab, record your answers from the two tables in a
README file. You only need to include the first and last columns from each table.

4. With pencil and paper, trace the execution of the second program. What will the values of
registers R0 through R5 be when the computer reaches the TRAP instruction?

5. Figure 3 gives the skeleton of an LC-3 machine language program. Each line is missing 16
bits, which you are to supply. Using Appendix A as a reference, fill in the missing bits
needed for each instruction. Caution is needed here, as it is easy to make a mistake! The last
three words, beginning at address x300B, are not instructions — they are data words (i.e.,
variables).

6. Using Figure 4 and the LC-3 documentation, trace the execution of this program. This
program makes use of two data values, found at x300b and x300c. In a few sentences, describe
what this program is trying to accomplish. Predict the results of running this program.

7. Suppose the values in memory locations x300b and x300c are interchanged. With this change,
what would the program do?

8. One of the lab exercises asks you to write an LC-3 program which will count the number of
one bits in a specified word of memory. Think about how you might do this. A key question
to ask is this: how can we inspect the ith bit to determine if it is a one?

1Named after John von Neumann (1903–1957): Hungarian-American mathematician and pioneer of the digital
computer.

http://castle.eiu.edu/~mathcs/mat3670/index/Webview/PattPatelAppA.pdf


Mathematics 3670: Lab 6 2

Address Content Content (binary) Instruction details

x3000 xE3FD 1110 001 1 1111 1101 LEA

DR = R1

offset = x1FD

R1 = PC + SEXT(x1FD) setcc()

x3001 x146E 0001 010 001 1 01110 ADD

DR = R2 SR = R1

imm = 1 imm5 = x0E

R2 = R1 + SEXT(x0E) setcc()

x3002 x35FB

x3003 x54A0

x3004 x14A5

x3005 x744E

x3006 xA7F7

x3007 x300A

x3008 xF025 1111 0000 0010 0101 TRAP

trapvect8 = x25

halt execution

Figure 1: A sequence of machine instructions for the LC-3 computer. Compare with lab6a.asm.



Mathematics 3670: Lab 6 3

Address Content Content (binary) Instruction details

x3000 x5020 0101 000 000 1 0 0000 AND

DR = R0 SR = R0

imm = 1 imm5 = x00

R0 = R0 AND SEXT(x00) setcc()

x3001 x1221

x3002 xE404

x3003 x6681

x3004 x1262

x3005 x16FF

x3006 x03FD

x3007 xF025 1111 0000 0010 0101 TRAP

trapvect8 = x25

halt execution

x3008 x0006 data word

Figure 2: A sequence of machine instructions for the LC-3 computer. Compare with lab6b.asm.



Mathematics 3670: Lab 6 4

Address 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 operation/data

x3000 R1 = PC + 10

x3001 R2 = M[R1 + 0]

x3002 R3 = M[R1 + 1]

x3003 R4 = NOT(R3)

x3004 R4 = R4 + 1

x3005 R5 = R2 + R4

x3006 BRzp x3009

x3007 M[R1+2] = R3

x3008 BRnzp x300A

x3009 M[R1+2] = R2

x300A TRAP x25

x300B x0036

x300C x0070

x300D xFFFF

Figure 3: The basic ingredients of an LC-3 program. Consult the documentation for the LC-3 ISA
to fill in each of the missing bits.

PC operation R0 R1 R2 R3 R4 R5 R6 R7 n z p M[x300B]

x3000 R1 = PC + 10

x3001

Figure 4: Predicting the execution of an LC-3 program.



Mathematics 3670: Lab 6 5

Lab Exercises

1. Create an lc3 folder to store the files needed for this lab. Obtain the files for this lab from
the course web site, placing them in this folder. Here is a brief description of these files:

PennSim.jar LC-3 simulator
lc3os.asm LC-3 operating system
lab6a.asm a first LC-3 program
lab6b.asm a second LC-3 program

2. Launch the LC-3 simulator by double clicking on PennSim.jar. Enlarge the window by drag-
ging the lower-right corner, which will give you a larger output window within the simulator.

3. Within the simulator, immediately above the output window, there is a place to enter a
command. To get a summary of all the commands, click on this area, then enter help.

4. To run a program on the LC-3, we need to have one or more object programs. To produce
these, we use the simulator’s built-in assembler. For example, we can assemble the LC-3
operating system by giving the following command:

as -warn lc3os.asm

If all goes well, you will get a message indicating no errors or warnings were produced. Equally
important, you will find a file named lc3os.obj was deposited in your working directory. In
a similar manner, assemble the code found in lab6a.asm.

5. You can now load both of these object files into memory, using the following commands:

load lc3os.obj

load lab6a.obj

The simulator will provide feedback for each of these requests. Scroll through the LC-3
memory, locating the word at address x3000. Observe that its content is xE3FD, the first
instruction of the lab6a program.

6. Observe that the value of the PC register is x0200, the required entry point for every LC-3
program we run. Also note that our own programs always have an “origin” of x3000 — the
first instruction of any program you write will always reside in memory at address x3000.

7. Set a breakpoint at the first instruction of our program with the following command:

break set x3000

8. Click on the Continue button to start execution of the LC-3. The memory word with address
x3000 will be highlighted in yellow. Now, carefully step through the program one instruction
at a time by clicking on the Step button. After each instruction, notice how the registers
change. Using the completed table from Figure 1, verify the actions taken by each instruction
of the program.

9. Perform similar actions for the program in lab6b.asm. You will need to assemble lab6b.asm,
then load lab6b.obj. To restart execution, change the value of the PC register to x0200 then
click on Continue. (To change the value of a register, double click on its value, enter the
desired new value, then hit the enter key.)

In a README file, record the value of each of the registers R0 through R5 as a result of executing
the program lab6b.



Mathematics 3670: Lab 6 6

10. In the README file, record the first and last columns of your completed tables from Figures 1
and 2.

11. Using information you entered in Figure 3, use Aquamacs to create a file named lab6c.asm,
following the pattern of our first two programs. Write each 16-bit instruction as a hexadecimal
value and use .FILL statements.

12. Within PennSim, assemble and load your lab6c program, then step through it, instruction
by instruction. Does it produce the result you predicted from your pre-lab exercises?

13. Swap the values of memory locations x300b and x300c and run the program again. Was your
pre-lab prediction correct?

14. Design an LC-3 machine language program (i.e., essentially consisting of .FILL instructions)
which will count the number of bits which are set in the word stored at the location which
immediately follows the last instruction (i.e., xf025) of your program. At the conclusion of
your program, the bit count (a number between 0 and 16) should be stored in R0.

Place your program in the file lab6d.asm. Thoroughly test your program. Include explanatory
comments within your program.

Submissions

The submission process is slightly different from previous labs. When everything is working to your
satisfaction, do the following:

• Create a lab6 folder

• Make copies of the following files, placing them in the lab6 folder:

README lab6c.asm lab6c.obj lab6d.asm lab6d.obj

• Now, submit your lab6 folder in the usual way by dropping it on the EIU submit icon.



Mathematics 3670: Lab 6 7

Appendix

Contents of lab6a.asm

1 ;;

2 ;; Author: Bill Slough

3 ;;

4 ;; MAT 3670

5 ;;

6 ;; A first machine-language LC-3 program

7 ;;

8 ;; This program is intentionally lacking comments, since part of the goal

9 ;; for this lab is to investigate the instruction set of the LC-3 computer

10 ;;

11
12 .ORIG x3000 ; specify the "origin"; i.e., where to load in memory

13
14 ; machine instructions

15 .FILL xE3FD

16 .FILL x146E

17 .FILL x35FB

18 .FILL x54A0

19 .FILL x14A5

20 .FILL x744E

21 .FILL xA7F7

22 .FILL x300A

23 .FILL xF025

24
25 .END

Contents of lab6b.asm

1 ;;

2 ;; Author: Bill Slough

3 ;;

4 ;; MAT 3670

5 ;;

6 ;; A second machine-language LC-3 program

7 ;;

8 ;; This program is intentionally lacking comments, since part of the goal

9 ;; for this lab is to investigate the instruction set of the LC-3 computer

10 ;;

11
12 .ORIG X3000 ; specify the "origin"; i.e., where to load in memory

13
14 ; machine instructions + data

15 .FILL x5020

16 .FILL x1221

17 .FILL xE404

18 .FILL x6681

19 .FILL x1262

20 .FILL x16FF

21 .FILL x03FD

22 .FILL xF025

23 .FILL x0006 ; data word

24
25 .END


