
Mathematics 3670: Laboratory 9

Pre-lab Exercises

1. Examine the assembly language program given in lab9a.asm. This program uses three dif-
ferent addressing modes: LD, LEA, and LDR. Using Appendix A as a reference, determine the
difference between each of these.

2. The program in lab9a.asm is logically composed of two parts: lines 1–17 and lines 19–48. The
program uses one integer variable (line 49) and one array of characters (line 50). Carefully
trace the execution of lines 1–17. Make a table which shows how the registers R0, R1, R2, and
R3 change as the loop makes progress. How will memory change as a result of executing this
loop?

3. In a similar way, carefully trace the execution of lines 19–48, keeping track of all registers
in use and showing how they change. How will memory change as a result of executing this
loop? What output will be produced by the PUTS trap routine?

4. Using lab9a.asm as a model, design LC-3 assembly language programs which perform the
following tasks:

(a) Process a given string X, changing any lower-case letters to their equivalent upper-case
counterparts. The change should be done “in place” — after your program runs, the
original characters of X will be replaced with the revised string. For example, if this
is done for lab9a.asm, then the string which begins at symbolic address X would be
transformed to become:

MATH 3670 IS FUN!

(b) Copy the string X to another group of memory locations, beginning at the symbolic
address Y, filtering out all non-alphabetic characters. As a result, the characters stored
in the destination will now have only characters between ’A’ and ’Z’. Assume that X is
no longer than 80 characters. You can declare space for Y as follows:

Y .BLKW 81 ; Up to 80 characters, plus the terminating NUL

(c) Determine whether or not the string stored at Y is a palindrome. A palindrome is a
string which reads the same in either direction — for example, “Madam, I’m Adam”
and “race car” are two famous palindromes.

Since Y has already been stripped of non-alphabetic characters, your test would be
applied to MADAMIMADAM and RACECAR in these two examples.



Mathematics 3670: Lab 9 2

Lab Exercises

1. Obtain copies of this week’s lab files and place them in your lc3 folder.

2. Launch the LC-3 simulator, then perform the following actions:

(a) Assemble lab9a.asm.

(b) Load lc3os.obj.

(c) Load lab9a.obj.

(d) Set breakpoints at x3000, ELOOP, ELOOP2 and STOP.

(e) Execute the program. Use the Continue button to quickly reach the program code,
then single-step through the first loop, watching the register values change in response
to the instructions. Don’t rush: the goal is to understand each and every instruction in
detail. How do your predictions from the pre-lab match the reality?

(f) In a similar way, step through the second loop. Once again, don’t rush through this.

(g) Test this program using a variety of strings. To do this, you need to modify lab9a.asm,
assemble it, and reload it. Your test cases should include both even and odd-length
strings and short strings. Does the program behave correctly for all such strings?

3. Implement the three programs described in the pre-lab exercises, testing carefully as you go.
Put your programs in lab9b.asm, lab9c.asm, and lab9d.asm. For the final program, you
should be able to place an arbitrary string in X and your program should announce—yes or
no—whether or not it is a palindrome. (You don’t need to be able to enter the string at
run-time; instead just enter it in the assembly language program.)

Submissions

Before submitting your work, make sure your name appears in each of the programs you wrote.
Also, ensure that each of your programs is generously commented.

Create a lab9 folder and place copies of all .asm programs you wrote in this folder. Submit the
folder by dragging it onto the EIU submission icon.



Mathematics 3670: Lab 9 3

Appendix

Contents of lab9a.asm

1 ;;

2 ;; Author: Bill Slough

3 ;;

4 ;; Determines the length of a string, then reverses and displays it.

5
6 .ORIG x3000

7
8 ;; Determine the length of the string X

9 LEA R0,X ; R0 = addr(X)

10 AND R1,R1,#0 ; i = 0

11 LOOP ADD R2,R0,R1 ; while (X[i] != ’\0’)

12 LDR R3,R2,#0 ;

13 BRz ELOOP ;

14 ADD R1,R1,#1 ; i = i + 1

15 BR LOOP ;

16 ELOOP ; end while

17 ST R1,N ; N = length(X)

18
19 ;; Now reverse the string X

20 AND R0,R0,#0 ; low = 0

21
22 LD R1,N

23 ADD R1,R1,#-1 ; high = N - 1

24
25 LOOP2 NOT R2,R1 ; while (low < high)

26 ADD R2,R2,#1 ;

27 ADD R2,R0,R2 ;

28 BRzp ELOOP2 ;

29
30 LEA R2,X ;

31 ADD R2,R2,R0 ; R2 = addr(X[low])

32
33 LEA R3,X ;

34 ADD R3,R3,R1 ; R3 = addr(X[high])

35
36 LDR R4,R2,#0 ; low_char = X[low]

37 LDR R5,R3,#0 ; high_char = X[high]

38
39 STR R4,R3,#0 ; X[high] = low_char

40 STR R5,R2,#0 ; X[low] = high_char

41
42 ADD R0,R0,#1 ; low++

43 ADD R1,R1,#-1 ; high--

44 BR LOOP2 ;

45 ELOOP2 ; end while

46 LEA R0,X

47 PUTS ; write(X)

48 STOP HALT ;

49 N .BLKW 1

50 X .STRINGZ "Math 3670 is fun!"

51 .END


