Mathematics 3670: Laboratory 9

Pre-lab Exercises

- 1. Examine the assembly language program given in lab9a.asm. This program uses three different addressing modes: LD, LEA, and LDR. Using Appendix A as a reference, determine the difference between each of these.
- 2. The program in lab9a.asm is logically composed of two parts: lines 1–17 and lines 19–48. The program uses one integer variable (line 49) and one array of characters (line 50). Carefully trace the execution of lines 1–17. Make a table which shows how the registers R0, R1, R2, and R3 change as the loop makes progress. How will memory change as a result of executing this loop?
- 3. In a similar way, carefully trace the execution of lines 19–48, keeping track of all registers in use and showing how they change. How will memory change as a result of executing this loop? What output will be produced by the PUTS trap routine?
- 4. Using lab9a.asm as a model, design LC-3 assembly language programs which perform the following tasks:
 - (a) Process a given string X, changing any lower-case letters to their equivalent upper-case counterparts. The change should be done "in place" after your program runs, the original characters of X will be replaced with the revised string. For example, if this is done for lab9a.asm, then the string which begins at symbolic address X would be transformed to become:

MATH 3670 IS FUN!

(b) Copy the string X to another group of memory locations, beginning at the symbolic address Y, filtering out all non-alphabetic characters. As a result, the characters stored in the destination will now have only characters between 'A' and 'Z'. Assume that X is no longer than 80 characters. You can declare space for Y as follows:

Y .BLKW 81 ; Up to 80 characters, plus the terminating NUL

(c) Determine whether or not the string stored at Y is a palindrome. A **palindrome** is a string which reads the same in either direction — for example, "Madam, I'm Adam" and "race car" are two famous palindromes.

Since ${\tt Y}$ has already been stripped of non-alphabetic characters, your test would be applied to <code>MADAMIMADAM</code> and <code>RACECAR</code> in these two examples.

Lab Exercises

- 1. Obtain copies of this week's lab files and place them in your lc3 folder.
- 2. Launch the LC-3 simulator, then perform the following actions:
 - (a) Assemble lab9a.asm.
 - (b) Load lc3os.obj.
 - (c) Load lab9a.obj.
 - (d) Set breakpoints at x3000, ELOOP, ELOOP2 and STOP.
 - (e) Execute the program. Use the Continue button to quickly reach the program code, then single-step through the first loop, watching the register values change in response to the instructions. Don't rush: the goal is to understand each and every instruction in detail. How do your predictions from the pre-lab match the reality?
 - (f) In a similar way, step through the second loop. Once again, don't rush through this.
 - (g) Test this program using a variety of strings. To do this, you need to modify lab9a.asm, assemble it, and reload it. Your test cases should include both even and odd-length strings and short strings. Does the program behave correctly for all such strings?
- 3. Implement the three programs described in the pre-lab exercises, testing carefully as you go. Put your programs in lab9b.asm, lab9c.asm, and lab9d.asm. For the final program, you should be able to place an arbitrary string in X and your program should announce—yes or no—whether or not it is a palindrome. (You don't need to be able to enter the string at run-time; instead just enter it in the assembly language program.)

Submissions

Before submitting your work, make sure your name appears in each of the programs you wrote. Also, ensure that each of your programs is generously commented.

Create a **lab9** folder and place copies of all .asm programs you wrote in this folder. Submit the folder by dragging it onto the EIU submission icon.

Appendix

Contents of lab9a.asm

1		;;			
2		;; Author: Bill Slough			
3		;;			
4		;; Determines the length of a string, then reverses and displays it.			
5					
6		.ORIG x3000			
7					
8		;; Dete	ermine the le	ngth o	f the string X
9		LEA	RO,X	;	RO = addr(X)
10	1.000	AND	R1,R1,#0	;	1 = 0
11 19	LUUP		KZ,KU,KI	;	while (X[1] != '(0')
12 19		LDR DD-	K3,K2,#U	;	
13		BRZ	LLUUP D1 D1 #1	;	i _ i _ 1
14 15		ADD DD	πι,πι,#1 ΙΟΟΡ	,	1 - 1 + 1
10 16		DR	LUUP	,	and while
10	LLUUF	ст	D1 N	,	N = longth(X)
18		51	10 1 , IV	,	N - Tengen(X)
19		·· Now	reverse the	string	X
20		AND	BO BO #0		low = 0
21		11112	100,100,110	,	
22		LD	R1.N		
23		ADD	R1.R1.#-1	:	high = N - 1
24				,	5
25	LOOP2	NOT	R2,R1	;	while (low < high)
26		ADD	R2,R2,#1	;	
27		ADD	R2,R0,R2	;	
28		BRzp	ELOOP2	;	
29					
30		LEA	R2,X	;	
31		ADD	R2,R2,R0	;	R2 = addr(X[low])
32					
33		LEA	R3,X	;	
34		ADD	R3,R3,R1	;	R3 = addr(X[high])
35					
36		LDR	R4,R2,#0	;	low_char = X[low]
37		LDR	R5,R3,#0	;	high_char = X[high]
38			54 56 46		
39		STR	R4,R3,#0	;	X[high] = low_char
40		STR	R5,R2,#0	;	X[low] = high_char
41			DO DO #1		
42			RU,RU,#I	;	TOM++
40		ADD DD	π1,π1,#-1 ΙΩΩΡΟ	,	nign
44	ድ፤ በበውኃ	DR	LUUFZ	,	and while
46		ΙΕΔ	BO X	,	end witte
47		PUTS	100 , 11		write(X)
48	STOP	HALT		,	#1 1 0 0 (a)/
49	N N	.BLKW	1	,	
50	X	STRINGZ "Math 3670 is fun!"			
51		.END			