
Mathematics 3670: Laboratory 10

Background

The LC-3 computer that we have been using in lab is supplied with a memory-mapped video
display. In the simulator, this display appears under the registers as a nearly square region.

The display is composed of a two-dimensional array of pixels: 124 rows of 128 pixels each. If
the rows are numbered from 0–123 and the columns are numbered from 0–127, then any one pixel
can be addressed by giving an ordered pair (r, c), where r is the row number and c is the column
number. Following usual conventions, the pixel (0, 0) is at the upper left-hand corner. Increasing
rows go down; increasing columns go from left to right.

Any one pixel can be described with a 15-bit value, using a simplified RGB color model. Briefly
stated, the colors red, green and blue are blended to form a desired color. Each of the three
colors is specified with an unsigned 5-bit integer, which specifies the amount of each color. So, for
example, red is specified with the triplet (11111, 00000, 00000) — or x7C00. Similarly, black is
(00000, 00000, 00000) = x0000 and white is (11111, 11111, 11111) = x7FFF.

Each pixel in the display is associated with one word of memory in the LC-3 computer. (The
most significant bit is unused, followed by five bits each for the colors red, green, and blue.) The
pixel at position (0, 0) is associated with the memory address xC000; (0, 1) is at xC001, (0, 2) is at
xC002 and so on. The video memory is arranged in row-major fashion: it is as if the rows of the
video display are cut apart and placed end to end in memory.

Pre-lab Exercises

1. How many pixels are in the video display? Give your answer as a hexadecimal value.

2. Determine the hexadecimal addresses of each of the following pixels:

the pixel at the upper-left corner xC000

the pixel at the upper-right corner

the pixel at the lower-left corner

the pixel at the lower-right corner

3. Suppose you want to light the pixel at row r and column c. Determine a formula for the
address of this pixel.

4. Suppose we want to light four 2×2 squares in various colors, one in each corner of the display.
Determine the addresses and values to produce this effect. Place your answers in the table
given in Figure 1.

5. Refer to Appendix A of of textbook. What, exactly, do the instructions JSR and RET do?

6. Carefully review the code given in lab10a.asm and see if you agree that the comments
accurately reflect the machine instructions.

7. Read the entire lab to see what you are being asked to do for this week’s lab.



Mathematics 3670: Lab 10 2

Address Value

upper left (red) xC000 x7C00

upper right (green)

lower left (blue)

lower right (white)

Figure 1: Planning to light four 2 × 2 squares of pixels.



Mathematics 3670: Lab 10 3

Lab Exercises

1. Obtain copies of this week’s lab files and place them in your lc3 folder.

2. Launch the LC-3 simulator. Scroll to the addresses you determined in Pre-lab exercise 2, and
replace the values (currently x0000) there with 7C00. Verify that the red pixels appear in the
correct locations. Since each pixel is very tiny, this requires careful inspection.

3. Darken these pixels you just lit by restoring their original values. (Again, just by scrolling
through memory — no programming is needed.)

4. Using lab10a.asm as a guide, write an assembly language program which will color each
of the four corner pixels red. Save your program in lab10b.asm. Assemble and load your
program; verify that it works correctly.

5. Using your work summarized in Figure 1, scroll through memory and change the sixteen
words of memory. Verify that four squares appear in the correct colors and locations. No
programming is needed for this step.

6. After you have seen the correct pixels, reset them to their original values.

7. An LC-3 assembly language program to produce these four squares is desired. Instead of
thinking of a hexadecimal address for each pixel, think of the (row, column) style of indexing.
Using lab10a.asm as a model, extend the main program so it colors the four squares in the
corners. Place your program in lab10c.asm.

Since 16 pixels need to be lit, there will be 16 subroutine calls. To keep your main program
compact, use a loop to produce these subroutine calls — the pixel coordinates can be stored
in an array. Assemble and test your program to be sure it works correctly.

8. Instead of working at the pixel level, we now want to think in terms of 4×4 squares of pixels.
These, too, can be organized into rows and columns and indexed in a similar way. There are
now 31 rows and 32 columns and any one block can be indexed by the ordered pair (r, c)
where 0 ≤ r ≤ 30 and 0 ≤ c ≤ 31.

Using the subroutine DRAW PIXEL as a guide, design a subroutine named DRAW BLOCK. Before
invoking this routine, the index values r and c are to be placed in registers R0 and R1; a 15-bit
color is assumed to be in R2. As a result, your subroutine should light the corresponding 4×4
block of pixels with the specified color.

Design your subroutine so it does all of the work of setting the pixels — when your code is
complete, DRAW PIXEL will no longer be needed. Include code in your main program to light
four 4 × 4 squares in the corners of the graphics display. Place your code in lab10d.asm.

9. Pascal’s triangle is a convenient way to organize binomial coefficients. For example, here
are the first five rows:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Observe that Pi,j = Pi−1,j−1 + Pi−1,j for all of the “interior” entries. A similar array of
values—Pascal’s triangle, mod 2—simply records whether or not the value is even or odd:

1
1 1
1 0 1
1 1 1 1
1 0 0 0 1



Mathematics 3670: Lab 10 4

For this situation, Pi,j = (Pi−1,j−1 + Pi−1,j) mod 2.

Using lab10d.asm as a starting point, write an LC-3 assembly language program which will
do the following:

(a) Read a value, N ROWS, from memory which gives the desired number of rows of the Pascal
triangle.

(b) Compute and display a graphical view of the Pascal mod 2 triangle. For each 1 entry,
display a 4 × 4 red block. For the 0 entries, display a blue block.

Place your program in lab10e.asm. Test your program to ensure it is correct.

Submissions

Before submitting your work, make sure your name appears in each of the programs you wrote.
Also, ensure that each of your programs is generously commented.

Create a lab10 folder and place copies of all .asm programs you wrote in this folder. Submit
the folder by dragging it onto the EIU submission icon.



Mathematics 3670: Lab 10 5

Appendix

Contents of lab10a.asm

1 ;;

2 ;; Author: Bill Slough

3 ;;

4 ;; Example of a subroutine in the LC-3 assembly language

5 ;;

6 ;; Lights one pixel on the video display

7 ;;

8
9 .ORIG x3000

10
11 LD R0,ROW

12 LD R1,COLUMN

13 LD R2,RED

14 JSR DRAW_PIXEL ; draw_pixel(2, 8, RED)

15 STOP HALT

16
17 ROW .FILL 2 ; which row?

18 COLUMN .FILL 8 ; which column?

19 RED .FILL x7C00 ; desired color

20
21 ROWS .FILL 124 ; Number of rows of the video display

22 COLS .FILL 128 ; Number of columns of the video display

23
24
25 DRAW_PIXEL

26 ;; Draw a pixel on the graphics display unit

27 ;; R0 - row

28 ;; R1 - column

29 ;; R2 - color

30
31 ST R3,SAVE_R3 ; Save the registers modified within this routine

32 ST R4,SAVE_R4

33
34 ADD R3,R0,#0 ;

35 LD R4,PIXELS_PER_ROW ;

36 MUL R3,R3,R4 ;

37 ADD R3,R3,R1 ; R3 = PIXELS_PER_ROW * row + column

38
39 LD R4,VIDEO_ADDR

40 ADD R4,R4,R3 ; R4 = address of desired pixel

41
42 STR R2,R4,#0 ; Video[row,column] = color

43
44 LD R3,SAVE_R3 ; Restore the registers and exit

45 LD R4,SAVE_R4

46 RET

47 SAVE_R3 .BLKW 1 ; Save area for registers

48 SAVE_R4 .BLKW 1

49 VIDEO_ADDR .FILL xC000 ; base address of the video display

50 PIXELS_PER_ROW .FILL 128 ; number of pixels per row

51 .END


