Mathematics 3670: Computer Systems Bits, Data Types, and Operations

Dr. Andrew Mertz

Mathematics and Computer Science Department Eastern Illinois University

Fall 2012

What	When
Read Chapter 2	this week
Design Lab 2 TMs	before Thursday
Complete Lab 2	this Thursday
Submit Lab 2 work	by next Thursday

Source: http://xkcd.com/571/

3-bit codes: no assigned meaning

3 bits yield $2^3 = 8$ possibilities

Number of bit patterns

number of bits	number of bit patterns
3	$2^3 = 8$
4	$2^4 = 16$
m	2^m
16	$2^{16} = 65,536$
32	$2^{32} = 4,294,967,296$
64	$2^{64} = 18,446,744,073,709,551,616$

What is the meaning of 0011010111110010 ?

- An integer? If so, which representation?
- One or more characters? (ASCII or Unicode)
- A floating point value?
- A value of an enumeration type?
- Something else?

Consider a bit string such as:			001101	0111110	0010		
Use 4-bit groups			11 0101	l 1111 (010		
Use hexadecimal digits:				3 5	F 2		
pattern hexadecimal	0000–1001 <mark>0–9</mark>	1010 A	1011 B	1100 C	1101 D	1110 E	1111 F

- American Standard Code for Information Interchange
- ASCII uses a 7-bit code
- 7 bits allows for only $2^7 = 128 \mbox{ different characters}$
- See http://highered.mcgraw-hill.com/sites/dl/free/ 0072467509/104653/PattPatelAppE.pdf

- One system for all the world's languages
- Unicode uses a muti-byte code
- 2 bytes provides $2^{16} = 65,536$ different characters
- See http://www.unicode.org/charts/

Wheel of 3-bit codes: food choices (enumeration type)

Wheel of 3-bit codes: unsigned integers

Wheel of 3-bit codes: signed magnitude integers

Wheel of 3-bit codes: one's complement integers

Wheel of 3-bit codes: two's complement, signed integers

Wheel of *m*-bit codes: two's complement, signed integers

Lab 2 exercise: complement and add one

Consider $n + TC(n) \dots$

TC(n) is the additive inverse of n: i.e., n + TC(n) = 0

Two's complement addition

Let $m = b_{n-1}b_{n-2}\dots b_2b_1b_0$ be an arbitrary *n*-bit pattern Complement each bit: $C(m) = \overline{b}_{n-1}\overline{b}_{n-2}\dots \overline{b}_2\overline{b}_1\overline{b}_0$

$$m + TC(m) = m + (C(m) + 1)$$

= $(m + C(m)) + 1$
= $(b_{n-1}b_{n-2}...b_2b_1b_0 + \overline{b}_{n-1}\overline{b}_{n-2}...\overline{b}_2\overline{b}_1\overline{b}_0) + 1$
= $(11...111) + 1$
= $00...000$

Conclusion

If m represents an integer k, then TC(m) represents -k.

Using an 8-bit register, what is the two's complement representation of -20?

Verify...

Using an 8-bit register, what is TC(-20)?

-20	\rightarrow	1 1 1 0 1 1 0 0
complement	\rightarrow	$0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$
add one	\rightarrow	0 0 0 1 0 1 0 0
	=	16 + 4
TC(-20)	=	20

Two's complement: binary to decimal conversion

Given a bit string $n = b_{w-1}b_{w-2}\dots b_2b_1b_0$, what value is represented?

MSB? Conclusion		What to do
$b_{w-1} = 0$ value is non-negative		evaluate n as a binary value
$b_{w-1} = 1$	value is negative	find $TC(n)$, evaluate, affix sign
0 1 1 0 0	1 0 0 0 = ?	
10011	$1 \ 0 \ 0 \ 0 = ?$	

Two's complement: decimal to binary conversion

Give a decimal value n and a word length w, what bit string $b_{w-1}b_{w-2} \dots b_2 b_1 b_0$ represents n?

Sign?What to do $n \ge 0$ convert(n)n < 0TC(convert(|n|))

To convert a non-negative value...

Greedy "brute force" algorithm	identify highest powers of two
Successive division by two	identify bits from LSB to MSB

Examples: Using an 8-bit word...

$$57 = ?$$

 $-57 = ?$

convert(n)

Successive division by two generates the bits in reverse order, from LSB to MSB. For example, take n = 57:

$57 \div 2$	=	$28 \times 2 + 1$
$28 \div 2$	=	$14 \times 2 + 0$
$14 \div 2$	=	$7 \times 2 + 0$
$7 \div 2$	=	$3 \times 2 + 1$
$3 \div 2$	=	$1 \times 2 + 1$
$1 \div 2$	=	$0 \times 2 + 1$

Conclusion: $(57)_{10} = (111001)_2$. For an 8-bit register, we fill with leading zeros: $(57)_{10} = (00111001)_2$.

$\mathsf{TC}(\mathsf{convert}(|n|))$

What is the 8-bit, two's complement representation of n = -57?

$$convert(|n|) = convert(57)$$
$$= (00111001)_2$$

Now, find the two's complement...

a_3	a_2	a_1	a_0
b_3	b_2	b_1	b_0

	c_2	c_1	
a_3	a_2	a_1	a_0
b_3	b_2	b_1	b_0
		s_1	s_0

c_3	c_2	c_1	
a_3	a_2	a_1	a_0
b_3	b_2	b_1	b_0
	s_2	s_1	s_0

c_4	c_3	c_2	c_1	
	a_3	a_2	a_1	a_0
	b_3	b_2	b_1	b_0
	s_3	s_2	s_1	s_0

c_4	c_3	c_2	c_1	
	a_3	a_2	a_1	a_0
	b_3	b_2	b_1	b_0
	s_3	s_2	s_1	s_0

We ignore the "carry out" c_4 generated in the leftmost column

$\begin{array}{ccccccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{array}$

This shows 3 + 2 = 5 in a 4-bit system

 $\begin{array}{cccc} 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ \hline & & 1 & 0 \end{array}$

 $\begin{array}{c|cccc} 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 \end{array}$

This shows 3 + (-5) = -2 in a 4-bit system

 $\begin{array}{ccccccccc} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}$

 $\begin{array}{cccc} 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \hline & 0 & 1 \end{array}$

 $\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \hline & 0 & 0 & 1 \end{array}$

 $\begin{array}{ccccccc} 0 & 1 & 0 & 0 \\ & 0 & 1 & 0 & 1 \\ & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 \end{array}$

This shows 5 + 4 = -7 in a 4-bit system Oops: arithmetic overflow

A	B	Outcome
positive	negative	correct result
negative	positive	correct result
negative	negative	possible overflow
positive	positive	possible overflow

Informal justification: two's complement wheel

Various low-level operations on bit strings are often useful

Arithmetic left shift

 $b_7b_6b_5b_4b_3b_2b_1b_0$ becomes $b_6b_5b_4b_3b_2b_1b_00$

If there is no overflow...

- an arithmetic left shift operation computes 2k, given k
- n successive arithmetic left shifts computes $2^n k$, given k

- We use sign extension when we increase the number of bits
- For example, we may convert an 4-bit value to a 8-bit value
- Simply replicate the MSB
- $b_3b_2b_1b_0$ becomes $b_3b_3b_3b_3b_3b_2b_1b_0$
 - $0101 \quad 00000101 \quad +5$
 - $1101 \quad 11111101 \quad -3 \\$

Why does it work?

Bit fiddling: bitwise AND

a	b	a AND b
0	0	0
0	1	0
1	0	0
1	1	1

Summary

- 1 AND b = b
- 0 AND b = 0

Bit fiddling: bitwise OR — inclusive or

a	b	a OR b
0	0	0
0	1	1
1	0	1
1	1	1

Summary

- 1 OR b = 1
- 0 OR b = b

Bit fiddling: bitwise XOR — exclusive or

b	a XOR b
0	0
1	1
0	1
1	0
	0

Summary

- a = b yields 0
- $\bullet \ a \neq b \text{ yields } 1$

AND is useful for isolating specific bits

OR is useful for inserting ones

Bit fiddling: XOR application — testing for equality

Two bit patterns match if and only if all result bits are 0

- Use a fixed number of bits, e.g., 32 bits
- Subdivide bits into fields: sign, exponent, fraction
- IEEE floating point standard (including Java's float):
 - 1 sign bit
 - 8 exponent bits, using "excess 127"
 - 23 fraction bits plus "hidden bit"
- Example 1: How can we represent $-6\frac{5}{8}$ as a 32-bit float?
- Example 2: What float value is represented by 3D800000?