Mathematics 3670: Computer Systems Bits, Data Types, and Operations

Dr. Andrew Mertz

Mathematics and Computer Science Department Eastern Illinois University

Fall 2012

What	When
Read Chapter 2	this week
Design Lab 2 TMs	before Thursday
Complete Lab 2	this Thursday
Submit Lab 2 work	by next Thursday

Geek humor

Source: http://xkcd.com/571/

3 bits yield $2^{3}=8$ possibilities

Number of bit patterns

number of bits	number of bit patterns
3	$2^{3}=8$
4	$2^{4}=16$
\ldots	\ldots
m	2^{m}
\ldots	\ldots
16	$2^{16}=65,536$
\ldots	\ldots
32	$2^{32}=4,294,967,296$
\ldots	\ldots
64	$2^{64}=18,446,744,073,709,551,616$
\ldots	\ldots

Representations

What is the meaning of 0011010111110010 ?

- An integer? If so, which representation?
- One or more characters? (ASCII or Unicode)
- A floating point value?
- A value of an enumeration type?
- Something else?

Consider a bit string such as: 0011010111110010							
Use 4-bit groups			0011010111110010				
Use hexadecimal digits:			35 F 2				
pattern	0000-1001	1010	1011	1100	1101	1110	1111
hexadecimal	0-9	A	B	C	D	E	F

ASCII code

- American Standard Code for Information Interchange
- ASCII uses a 7-bit code
- 7 bits allows for only $2^{7}=128$ different characters
- See http://highered.mcgraw-hill.com/sites/dl/free/ 0072467509/104653/PattPatelAppE.pdf

Unicode

- One system for all the world's languages
- Unicode uses a muti-byte code
- 2 bytes provides $2^{16}=65,536$ different characters
- See http://www.unicode.org/charts/

Wheel of 3-bit codes: food choices (enumeration type)

Wheel of 3-bit codes: unsigned integers

Wheel of 3-bit codes: signed magnitude integers

Wheel of 3-bit codes: one's complement integers

Wheel of 3-bit codes: two's complement, signed integers

Wheel of m-bit codes: two's complement, signed integers

Lab 2 exercise: complement and add one

$$
\begin{array}{cllllllllll}
n & \text { input } & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
& & & & & & \Downarrow & & & & \\
& \text { complement } & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
& & & & & & \Downarrow & & & & \\
& \text { add one } & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}
$$

Consider $n+T C(n) \ldots$

$$
\begin{array}{llllllllll}
n & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
T C(n) & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$T C(n)$ is the additive inverse of n : i.e., $n+T C(n)=0$

Two's complement addition

Let $m=b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}$ be an arbitrary n-bit pattern
Complement each bit: $C(m)=\bar{b}_{n-1} \bar{b}_{n-2} \ldots \bar{b}_{2} \bar{b}_{1} \bar{b}_{0}$

$$
\begin{aligned}
m+T C(m) & =m+(C(m)+1) \\
& =(m+C(m))+1 \\
& =\left(b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}+\bar{b}_{n-1} \bar{b}_{n-2} \ldots \bar{b}_{2} \bar{b}_{1} \bar{b}_{0}\right)+1 \\
& =(11 \ldots 111)+1 \\
& =00 \ldots 000
\end{aligned}
$$

Conclusion

If m represents an integer k, then $T C(m)$ represents $-k$.

Two's complement: example

Using an 8-bit register, what is the two's complement representation of -20 ?

$$
\left.\begin{array}{rl}
20 & =16+4 \\
& =0
\end{array}\right)
$$

Verify...

$$
\begin{array}{lllllllll}
n & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
T C(n) & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

Two's complement: example

Using an 8-bit register, what is $T C(-20)$?

$$
\left.\begin{array}{rl}
-20 & \rightarrow \\
\text { complement } & \rightarrow \\
\text { add one } & \rightarrow 0 \\
& =0
\end{array}\right)
$$

Given a bit string $n=b_{w-1} b_{w-2} \ldots b_{2} b_{1} b_{0}$, what value is represented?

MSB?	Conclusion	What to do									
$b_{w-1}=0$	value is non-negative	evaluate n as a binary value									
$b_{w-1}=1$	value is negative	find $T C(n)$, evaluate, affix sign	\quad	0	1	0	1	0	$0=?$		
:---	:---	:---	:---	:---	:---	:---	:---				
1	0	0	1	1	0	0	$0=?$				

Two's complement: decimal to binary conversion

Give a decimal value n and a word length w, what bit string $b_{w-1} b_{w-2} \ldots b_{2} b_{1} b_{0}$ represents n ?

Sign?	What to do
$n \geq 0$	convert (n)
$n<0$	$\operatorname{TC}(\operatorname{convert}(\|n\|))$

To convert a non-negative value...

Greedy "brute force" algorithm identify highest powers of two Successive division by two identify bits from LSB to MSB

Examples: Using an 8-bit word...

$$
\begin{aligned}
57 & =? \\
-57 & =?
\end{aligned}
$$

Decimal to binary conversion (non-negative value)

convert (n)

Successive division by two generates the bits in reverse order, from LSB to MSB. For example, take $n=57$:

$$
\begin{aligned}
57 \div 2 & =28 \times 2+1 \\
28 \div 2 & =14 \times 2+0 \\
14 \div 2 & =7 \times 2+0 \\
7 \div 2 & =3 \times 2+1 \\
3 \div 2 & =1 \times 2+1 \\
1 \div 2 & =0 \times 2+1
\end{aligned}
$$

Conclusion: $(57)_{10}=(111001)_{2}$. For an 8 -bit register, we fill with leading zeros: $(57)_{10}=(00111001)_{2}$.

Decimal to binary conversion (negative value)

TC(convert (|n|))
What is the 8 -bit, two's complement representation of $n=-57$?

$$
\begin{aligned}
\operatorname{convert}(|n|) & =\operatorname{convert}(57) \\
& =(00111001)_{2}
\end{aligned}
$$

Now, find the two's complement. . .

$$
\begin{array}{rlllllllll}
57 & \rightarrow & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\text { complement } & \rightarrow & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
\text { add one } & \rightarrow & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}
$$

Addition on binary quantities

a_{3}	a_{2}	a_{1}	a_{0}
b_{3}	b_{2}	b_{1}	b_{0}

Addition on binary quantities

	c_{1}		
a_{3}	a_{2}	a_{1}	a_{0}
b_{3}	b_{2}	b_{1}	b_{0}
			s_{0}

Addition on binary quantities

	c_{2}	c_{1}	
a_{3}	a_{2}	a_{1}	a_{0}
b_{3}	b_{2}	b_{1}	b_{0}
		s_{1}	s_{0}

Addition on binary quantities

c_{3}	c_{2}	c_{1}	
a_{3}	a_{2}	a_{1}	a_{0}
b_{3}	b_{2}	b_{1}	b_{0}
	s_{2}	s_{1}	s_{0}

Addition on binary quantities

c_{4}| c_{3} | c_{2} | c_{1} | |
| :---: | :---: | :---: | :---: |
| a_{3} | a_{2} | a_{1} | a_{0} |
| b_{3} | b_{2} | b_{1} | b_{0} |
| s_{3} | s_{2} | s_{1} | s_{0} |

Addition on binary quantities

c_{4}| c_{3} | c_{2} | c_{1} | |
| :---: | :---: | :---: | :---: |
| | a_{3} | a_{2} | a_{1} |
| | a_{0} | | |
| b_{3} | b_{2} | b_{1} | b_{0} |
| | s_{3} | s_{2} | s_{1} |
| | s_{0} | | |

We ignore the "carry out" c_{4} generated in the leftmost column

Addition on binary quantities: example 1

0	0	1	1
0	0	1	0

Addition on binary quantities: example 1

Addition on binary quantities: example 1

Addition on binary quantities: example 1

0	1	0	
0	0	1	1
0	0	1	0
	1	0	1

Addition on binary quantities: example 1

0	0	1	0	
	0	0	1	1
	0	0	1	0
0	1	0	1	

Addition on binary quantities: example 1

0	0	1	0	
	0	0	1	1
	0	0	1	0
0	1	0	1	

This shows $3+2=5$ in a 4-bit system

Addition on binary quantities: example 2

0	0	1	1
1	0	1	1

Addition on binary quantities: example 2

Addition on binary quantities: example 2

	1	1	
0	0	1	1
1	0	1	1
		1	0

Addition on binary quantities: example 2

0	1	1	
0	0	1	1
1	0	1	1
	1	1	0

Addition on binary quantities: example 2

0	0	1	1	
	0	0	1	1
	1	0	1	1
	1	1	1	0

Addition on binary quantities: example 2

$$
\begin{array}{lllll}
0 & 0 & 1 & 1 & \\
& 0 & 0 & 1 & 1 \\
& 1 & 0 & 1 & 1 \\
\hline & 1 & 1 & 1 & 0
\end{array}
$$

This shows $3+(-5)=-2$ in a 4-bit system

Addition on binary quantities: example 3

0	1	0	1
0	1	0	0

Addition on binary quantities: example 3

Addition on binary quantities: example 3

	0	0	
0	1	0	1
0	1	0	0
		0	1

Addition on binary quantities: example 3

1	0	0	
0	1	0	1
0	1	0	0
	0	0	1

Addition on binary quantities: example 3

0	1	0	0	
	0	1	0	1
	0	1	0	0
1	0	0	1	

Addition on binary quantities: example 3

0 | 1 | 0 | 0 | | |
| :--- | :--- | :--- | :--- | :--- |
| | 0 | 1 | 0 | 1 |
| | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | |

This shows $5+4=-7$ in a 4 -bit system Oops: arithmetic overflow

Overflow summary for $A+B$

A	B	Outcome
positive	negative	correct result
negative	positive	correct result
negative	negative	possible overflow
positive	positive	possible overflow

Informal justification: two's complement wheel

Bit fiddling: arithmetic left shift

Various low-level operations on bit strings are often useful

Arithmetic left shift

$$
b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} \text { becomes } b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} 0
$$

If there is no overflow. . .

- an arithmetic left shift operation computes $2 k$, given k
- n successive arithmetic left shifts computes $2^{n} k$, given k

Bit fiddling: sign extension

- We use sign extension when we increase the number of bits
- For example, we may convert an 4-bit value to a 8 -bit value
- Simply replicate the MSB
- $b_{3} b_{2} b_{1} b_{0}$ becomes $b_{3} b_{3} b_{3} b_{3} b_{3} b_{2} b_{1} b_{0}$

$$
\begin{array}{lll}
0101 & 00000101 & +5 \\
1101 & 11111101 & -3
\end{array}
$$

Why does it work?

Bit fiddling: bitwise AND

a	b	a AND b
0	0	0
0	1	0
1	0	0
1	1	1

Summary

- 1 AND $b=b$
- 0 AND $b=0$

Bit fiddling: bitwise OR — inclusive or

a	b	a OR b
0	0	0
0	1	1
1	0	1
1	1	1

Summary

- 1 OR $b=1$
- 0 OR $b=b$

Bit fiddling: bitwise XOR — exclusive or

a	b	a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

Summary

- $a=b$ yields 0
- $a \neq b$ yields 1

Bit fiddling: masking operations

AND is useful for isolating specific bits

\[

\]

OR is useful for inserting ones

$$
\begin{array}{ccccccccc}
& b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\
\text { OR } & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\cline { 2 - 8 } & 1 & 1 & 1 & 1 & 1 & b_{2} & b_{1} & b_{0}
\end{array}
$$

Bit fiddling: XOR application - testing for equality

Two bit patterns match if and only if all result bits are 0

Floating point representation

- Use a fixed number of bits, e.g., 32 bits
- Subdivide bits into fields: sign, exponent, fraction
- IEEE floating point standard (including Java's float):
- 1 sign bit
- 8 exponent bits, using "excess 127 "
- 23 fraction bits plus "hidden bit"
- Example 1: How can we represent $-6 \frac{5}{8}$ as a 32-bit float?
- Example 2: What float value is represented by 3D800000 ?

