
Mathematics 3670: Computer Systems
Bits, Data Types, and Operations

Dr. Andrew Mertz

Mathematics and Computer Science Department
Eastern Illinois University

Fall 2012

Week 2: to do

What When

Read Chapter 2 this week

Design Lab 2 TMs before Thursday

Complete Lab 2 this Thursday

Submit Lab 2 work by next Thursday

Geek humor

Source: http://xkcd.com/571/

http://xkcd.com/571/

3-bit codes: no assigned meaning

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

000

001

010

011

100

101

110

111

3 bits yield 23 = 8 possibilities

Number of bit patterns

number of bits number of bit patterns

3 23 = 8
4 24 = 16

.
m 2m

.
16 216 = 65, 536
.
32 232 = 4, 294, 967, 296
.
64 264 = 18, 446, 744, 073, 709, 551, 616
.

Representations

What is the meaning of 0011010111110010 ?

An integer? If so, which representation?

One or more characters? (ASCII or Unicode)

A floating point value?

A value of an enumeration type?

Something else?

Shorthand notation: hexadecimal

Consider a bit string such as: 0011010111110010

Use 4-bit groups 0011 0101 1111 0010

Use hexadecimal digits: 3 5 F 2

pattern 0000–1001 1010 1011 1100 1101 1110 1111
hexadecimal 0–9 A B C D E F

ASCII code

American Standard Code for Information Interchange

ASCII uses a 7-bit code

7 bits allows for only 27 = 128 different characters

See http://highered.mcgraw-hill.com/sites/dl/free/

0072467509/104653/PattPatelAppE.pdf

http://highered.mcgraw-hill.com/sites/dl/free/0072467509/104653/PattPatelAppE.pdf
http://highered.mcgraw-hill.com/sites/dl/free/0072467509/104653/PattPatelAppE.pdf

Unicode

One system for all the world’s languages

Unicode uses a muti-byte code

2 bytes provides 216 = 65, 536 different characters

See http://www.unicode.org/charts/

http://www.unicode.org/charts/

Wheel of 3-bit codes: food choices (enumeration type)

000
banana

001
papaya

010
apple

011
orange

100
peach

101
pear

110
apricot

111
mango

Wheel of 3-bit codes: unsigned integers

000
0

001
1

010
2

011
3

100
4

101
5

110
6

111
7

Wheel of 3-bit codes: signed magnitude integers

leading bit: sign

+0 and −0
Symmetric range
[−3,+3]

000
0

001
1

010
2

011
3

100
−0

101
−1

110
−2

111
−3

Wheel of 3-bit codes: one’s complement integers

+0 and −0
Symmetric range
[−3,+3]

000
0

001
1

010
2

011
3

100
−3

101
−2

110
−1

111
−0

Wheel of 3-bit codes: two’s complement, signed integers

asymmetric range
[−4,+3]

economical:
subtraction via
addition

explains counting
sheep comic

000
0

001
1

010
2

011
3

100
−4

101
−3

110
−2

111
−1

Wheel of m-bit codes: two’s complement, signed integers

0 000. . . 000
1 000. . . 001
2 000. . . 010

.
2m−1 − 1 011. . . 111
−2m−1 100. . . 000

.
−2 111. . . 110
−1 111. . . 111

0 1 2 ...
−1−2...

2m−1 − 1−2m−1

Lab 2 exercise: complement and add one

n input 0 1 1 0 0 1 0 0 0

⇓
complement 1 0 0 1 1 0 1 1 1

⇓
TC(n) add one 1 0 0 1 1 1 0 0 0

Consider n+ TC(n) . . .

n 0 1 1 0 0 1 0 0 0

TC(n) 1 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

TC(n) is the additive inverse of n: i.e., n+ TC(n) = 0

Two’s complement addition

Let m = bn−1bn−2 . . . b2b1b0 be an arbitrary n-bit pattern

Complement each bit: C(m) = bn−1bn−2 . . . b2b1b0

m+ TC(m) = m+ (C(m) + 1)

= (m+ C(m)) + 1

= (bn−1bn−2 . . . b2b1b0 + bn−1bn−2 . . . b2b1b0) + 1

= (11 . . . 111) + 1

= 00 . . . 000

Conclusion
If m represents an integer k, then TC(m) represents −k.

Two’s complement: example

Using an 8-bit register, what is the two’s complement
representation of −20?

20 = 16 + 4
= 0 0 0 1 0 1 0 0

complement → 1 1 1 0 1 0 1 1

add one → 1 1 1 0 1 1 0 0

Verify. . .

n 0 0 0 1 0 1 0 0

TC(n) 1 1 1 0 1 1 0 0

Two’s complement: example

Using an 8-bit register, what is TC(−20)?

−20 → 1 1 1 0 1 1 0 0

complement → 0 0 0 1 0 0 1 1

add one → 0 0 0 1 0 1 0 0

= 16 + 4

TC(−20) = 20

Two’s complement: binary to decimal conversion

Given a bit string n = bw−1bw−2 . . . b2b1b0, what value is
represented?

MSB? Conclusion What to do

bw−1 = 0 value is non-negative evaluate n as a binary value

bw−1 = 1 value is negative find TC(n), evaluate, affix sign

0 1 1 0 0 1 0 0 0 = ?

1 0 0 1 1 1 0 0 0 = ?

Two’s complement: decimal to binary conversion

Give a decimal value n and a word length w, what bit string
bw−1bw−2 . . . b2b1b0 represents n?

Sign? What to do

n ≥ 0 convert(n)

n < 0 TC(convert(|n|))

To convert a non-negative value. . .

Greedy “brute force” algorithm identify highest powers of two

Successive division by two identify bits from LSB to MSB

Examples: Using an 8-bit word. . .
57 = ?
−57 = ?

Decimal to binary conversion (non-negative value)

convert(n)

Successive division by two generates the bits in reverse order, from
LSB to MSB. For example, take n = 57:

57÷ 2 = 28× 2 + 1

28÷ 2 = 14× 2 + 0

14÷ 2 = 7× 2 + 0

7÷ 2 = 3× 2 + 1

3÷ 2 = 1× 2 + 1

1÷ 2 = 0× 2 + 1

Conclusion: (57)10 = (111001)2. For an 8-bit register, we fill with
leading zeros: (57)10 = (00111001)2.

Decimal to binary conversion (negative value)

TC(convert(|n|))

What is the 8-bit, two’s complement representation of n = −57?

convert(|n|) = convert(57)

= (00111001)2

Now, find the two’s complement. . .

57 → 0 0 1 1 1 0 0 1

complement → 1 1 0 0 0 1 1 0

add one → 1 1 0 0 0 1 1 1

Addition on binary quantities

c4 c3 c2 c1

a3 a2 a1 a0
b3 b2 b1 b0

s3 s2 s1 s0

We ignore the “carry out” c4 generated in the leftmost column

Addition on binary quantities

c4 c3 c2

c1
a3 a2 a1 a0
b3 b2 b1 b0

s3 s2 s1

s0

We ignore the “carry out” c4 generated in the leftmost column

Addition on binary quantities

c4 c3

c2 c1
a3 a2 a1 a0
b3 b2 b1 b0

s3 s2

s1 s0

We ignore the “carry out” c4 generated in the leftmost column

Addition on binary quantities

c4

c3 c2 c1
a3 a2 a1 a0
b3 b2 b1 b0

s3

s2 s1 s0

We ignore the “carry out” c4 generated in the leftmost column

Addition on binary quantities

c4 c3 c2 c1
a3 a2 a1 a0
b3 b2 b1 b0
s3 s2 s1 s0

We ignore the “carry out” c4 generated in the leftmost column

Addition on binary quantities

c4 c3 c2 c1
a3 a2 a1 a0
b3 b2 b1 b0
s3 s2 s1 s0

We ignore the “carry out” c4 generated in the leftmost column

Addition on binary quantities: example 1

0 0 1 0

0 0 1 1
0 0 1 0

0 1 0 1

This shows 3 + 2 = 5 in a 4-bit system

Addition on binary quantities: example 1

0 0 1

0
0 0 1 1
0 0 1 0

0 1 0

1

This shows 3 + 2 = 5 in a 4-bit system

Addition on binary quantities: example 1

0 0

1 0
0 0 1 1
0 0 1 0

0 1

0 1

This shows 3 + 2 = 5 in a 4-bit system

Addition on binary quantities: example 1

0

0 1 0
0 0 1 1
0 0 1 0

0

1 0 1

This shows 3 + 2 = 5 in a 4-bit system

Addition on binary quantities: example 1

0 0 1 0
0 0 1 1
0 0 1 0
0 1 0 1

This shows 3 + 2 = 5 in a 4-bit system

Addition on binary quantities: example 1

0 0 1 0
0 0 1 1
0 0 1 0
0 1 0 1

This shows 3 + 2 = 5 in a 4-bit system

Addition on binary quantities: example 2

0 0 1 1

0 0 1 1
1 0 1 1

1 1 1 0

This shows 3 + (−5) = −2 in a 4-bit system

Addition on binary quantities: example 2

0 0 1

1
0 0 1 1
1 0 1 1

1 1 1

0

This shows 3 + (−5) = −2 in a 4-bit system

Addition on binary quantities: example 2

0 0

1 1
0 0 1 1
1 0 1 1

1 1

1 0

This shows 3 + (−5) = −2 in a 4-bit system

Addition on binary quantities: example 2

0

0 1 1
0 0 1 1
1 0 1 1

1

1 1 0

This shows 3 + (−5) = −2 in a 4-bit system

Addition on binary quantities: example 2

0 0 1 1
0 0 1 1
1 0 1 1
1 1 1 0

This shows 3 + (−5) = −2 in a 4-bit system

Addition on binary quantities: example 2

0 0 1 1
0 0 1 1
1 0 1 1
1 1 1 0

This shows 3 + (−5) = −2 in a 4-bit system

Addition on binary quantities: example 3

0 1 0 0

0 1 0 1
0 1 0 0

1 0 0 1

This shows 5 + 4 = −7 in a 4-bit system
Oops: arithmetic overflow

Addition on binary quantities: example 3

0 1 0

0
0 1 0 1
0 1 0 0

1 0 0

1

This shows 5 + 4 = −7 in a 4-bit system
Oops: arithmetic overflow

Addition on binary quantities: example 3

0 1

0 0
0 1 0 1
0 1 0 0

1 0

0 1

This shows 5 + 4 = −7 in a 4-bit system
Oops: arithmetic overflow

Addition on binary quantities: example 3

0

1 0 0
0 1 0 1
0 1 0 0

1

0 0 1

This shows 5 + 4 = −7 in a 4-bit system
Oops: arithmetic overflow

Addition on binary quantities: example 3

0 1 0 0
0 1 0 1
0 1 0 0
1 0 0 1

This shows 5 + 4 = −7 in a 4-bit system
Oops: arithmetic overflow

Addition on binary quantities: example 3

0 1 0 0
0 1 0 1
0 1 0 0
1 0 0 1

This shows 5 + 4 = −7 in a 4-bit system
Oops: arithmetic overflow

Overflow summary for A+B

A B Outcome

positive negative correct result

negative positive correct result

negative negative possible overflow

positive positive possible overflow

Informal justification: two’s complement wheel

Bit fiddling: arithmetic left shift

Various low-level operations on bit strings are often useful

Arithmetic left shift

b7b6b5b4b3b2b1b0 becomes b6b5b4b3b2b1b00

If there is no overflow. . .

an arithmetic left shift operation computes 2k, given k

n successive arithmetic left shifts computes 2nk, given k

Bit fiddling: sign extension

We use sign extension when we increase the number of bits

For example, we may convert an 4-bit value to a 8-bit value

Simply replicate the MSB

b3b2b1b0 becomes b3b3b3b3b3b2b1b0

0101 00000101 +5

1101 11111101 −3

Why does it work?

Bit fiddling: bitwise AND

a b a AND b

0 0 0

0 1 0

1 0 0

1 1 1

Summary

1 AND b = b

0 AND b = 0

Bit fiddling: bitwise OR — inclusive or

a b a OR b

0 0 0

0 1 1

1 0 1

1 1 1

Summary

1 OR b = 1

0 OR b = b

Bit fiddling: bitwise XOR — exclusive or

a b a XOR b

0 0 0

0 1 1

1 0 1

1 1 0

Summary

a = b yields 0

a 6= b yields 1

Bit fiddling: masking operations

AND is useful for isolating specific bits

b7 b6 b5 b4 b3 b2 b1 b0
AND 0 0 0 0 0 1 1 1

0 0 0 0 0 b2 b1 b0

OR is useful for inserting ones

b7 b6 b5 b4 b3 b2 b1 b0
OR 1 1 1 1 1 0 0 0

1 1 1 1 1 b2 b1 b0

Bit fiddling: XOR application — testing for equality

a7 a6 a5 a4 a3 a2 a1 a0
XOR b7 b6 b5 b4 b3 b2 b1 b0

? ? ? ? ? ? ? ?

Two bit patterns match if and only if all result bits are 0

Floating point representation

Use a fixed number of bits, e.g., 32 bits

Subdivide bits into fields: sign, exponent, fraction

IEEE floating point standard (including Java’s float):

1 sign bit
8 exponent bits, using “excess 127”
23 fraction bits plus “hidden bit”

Example 1: How can we represent −65
8 as a 32-bit float?

Example 2: What float value is represented by 3D800000 ?

