
Mathematics 3670: Computer Systems
Introduction

Dr. Andrew Mertz

Mathematics and Computer Science Department
Eastern Illinois University

Fall 2012

Week 1: to do

What When

Read Chapter 1 this week

Read Lab 1 handout before Thursday

Determine Lab 1 Turing
machine snapshots

before Thursday

Design Turing machine
for halving

before Thursday

Complete Lab 1 this Thursday

Submit Lab 1 work on/before next Thursday

The big picture

Complex systems can be organized as a hierarchy of
abstractions

Bottom level is most basic; upper levels appear most complex

We will study this hierarchy from the bottom up

Key idea: how is level N ` 1 implemented given level N?

Ultimate aim – understand how the top level is achieved:
no magic allowed!

A hierarchy

Problems
Ò

Algorithms
Ò

Language
Ò

Machine architecture (ISA)
Ò

Microarchitecture
Ò

Circuits
Ò

Devices

Problem solving with computers

Begin with a problem statement

What are the inputs?
What are the desired outputs?
What is the relationship between inputs and outputs?

Design an algorithm, which will transform inputs to outputs

How do we express the algorithm?
Ultimately, we want the algorithm to become a well-defined
pattern of electrons flowing within a physical computer

A simple problem

Input: A non-negative integer n

Output: n mod 3

To design an algorithm for this problem, we need to know:

what primitive operations are available

what abstraction level is appropriate

Depending on the abstraction level, we may also need to be aware
of data representation



The Turing machine

Proposed in 1936 by English mathematician Alan Turing

Can be used to formalize the idea of algorithm

Is simple to describe

Like modern computers, operates at a very basic level: any
one step within a computation doesn’t do very much

The Turing machine: basic ingredients

A tape, divided into squares – infinite in both directions

A read/write head which can inspect and change the contents
of one square on the tape

A finite control unit which remembers the “state”

A set of states with one initial state

A subset of states called final states

A finite table of actions which controls how the machine
makes one computational step

Turing machine actions

Any one action of the Turing machine is described by five
components:

current state

current symbol

symbol to write

next state

direction to move read/write head: left, right, stay

For example, pq, 0, 1, q1, Lq tells the machine “if in state q the
read/write head is scanning the symbol 0, then overwrite it with
the symbol 1, switch to state q1 and move the read/write head one
step to the left”

Turing machine actions

The action pq, 0, 1, q1, Lq can be viewed as an edge in a directed
graph:

q q1
0, 1, L

We can describe a Turing machine with a collection of actions like
these, giving us a labeled, directed graph

Turing machines: one computation step

q q1
0, 1, L

0 1 1
q

1 1 1

q1

Computing functions with Turing machines

α

q0

fpαq
qf



Back to the mod 3 problem

We will represent n in unary
For input 35, place 35 consecutive 0’s on the tape
We want to end up with 35 mod 3 “ 2, i.e., 2 consecutive 0’s

Division by 3 can be accomplished by repeated subtraction

Challenge: what states and transitions are needed?

Let’s think about it. . .

A Turing machine solution for the mod 3 problem

q0

q1 q2 q3

q4

l : 0, S

l : l, S

l : 0, L

0 : l, R

0 : l, R

0 : l, R
l : 0, S

Simulating a Turing machine

Live demo of JFLAP

Understanding the mod 3 Turing machine

q0

q1 q2 q3

q4

l : 0, S

l : l, S

l : 0, L

0 : l, R

0 : l, R

0 : l, R
l : 0, S

The q0, q1, q2 cycle subtracts 3 on each complete loop
q0 – so far, we have removed 3t zeros
q1 – so far, we have removed 3t` 1 zeros
q2 – so far, we have removed 3t` 2 zeros
q2 Ñ q3 Ñ q4 writes 00, then halts
q1 Ñ q4 writes 0, then halts
q0 Ñ q4 writes l, then halts

Turing machines as black boxes

T mod 3n n mod 3

Black box view is an essential abstraction:

Hides inessential detail

Allows for understanding of “big picture”

Universal computational device (Turing, 1936)

T mod 3 does one task and one task only

If you want to perform some other task, you need a different
machine

Could we design one machine that can do the work of any
other machine?

Yes! This is the machine we call U — the universal machine

UM,x output of M , given x

U simulates what M would do — a programmable computer!



Turing’s thesis

If an algorithm exists for some problem, there is an
equivalent Turing machine

Turing’s work provides a foundation for understanding the limits of
computation — what is possible to compute and what is
impossible to compute

Important idea #1 (textbook)

All computers (big, small, fast, slow, . . . ) are capable of
computing exactly the same things, given enough time
and enough memory

Important idea #2 (textbook)

Problems we wish to solve with a computer are stated in
some natural language, such as English. Ultimately, these
problems are solved by electrons running around inside
the computer. To achieve this, a sequence of systematic
transformations takes place. At the lowest levels, very
simple tasks are being performed.

The hierarchy, revisited

Problems
Ò

Algorithms
Ò

Language
Ò

Machine architecture (ISA)
Ò

Microarchitecture
Ò

Circuits
Ò

Devices

Problem statement

Stated in a natural language, like English

We must avoid any ambiguity

Misunderstandings at this level will cause many issues later in
the development, increasing development cost, delaying
completion

Obtaining an accurate specification of the problem is often
difficult

The algorithm: essential ingredients

Some number of inputs

Some number of outputs

Definiteness property: each step must be precisely defined

Effectiveness property: each step must be something that can
be carried out by a person in a finite amount of time

Finiteness property: the algorithm, when followed, must
terminate after a finite number of steps



Definiteness – you be the judge

Suppose m and n are two arbitrary integers; positive, zero, or
negative

We are devising an algorithm that uses “integer” division,
with quotient and remainder; one step is:

let k be the remainder of m˜ n
For definiteness, we need a precise definition of the action

Do we have that?

Effectiveness – you be the judge

Suppose we are devising an algorithm which uses floating
point arithmetic; one step is:

if there are 7 consecutive 3’s in the decimal expansion of π
then . . .

For effectiveness, each step must be something that can be

basic enough to be carried out by a person
completed in a finite amount of time

Do we have that?

Finiteness – you be the judge

Suppose we are computing with exact, rational arithmetic

Let x be 1/7
Determine m and d1, d2, . . . , dm so that
0.d1d2 . . . dm “ x

For finiteness, each step must terminate after some finite
number of steps

Do we have that?

From algorithms to programs

To implement an algorithm, we need a programming language

High level: Java, C++, C, COBOL, FORTRAN, Python, Perl,
Prolog, etc.

Low level: Assembly language

High level – machine independent

Low level – tied to a specific architecture

The ISA – Instruction Set Architecture

Ultimately, programs are expressed as patterns of 0’s and 1’s:
machine language

Translators (compilers and assemblers) perform conversion,
producing machine language from higher levels

ISA specifies:

instruction set (what operations are possible?)
data types (e.g., integer vs. floating point, range and precision)
addressing modes (how is an operand located in the memory?)

Typical ISAs: Intel x86, HP PA-RISC, Sun Sparc, ARM,
Motorola 68k, etc.

Microarchitecture

microarchitecture: implementation of an ISA

To add x to y requires lower level details, register transfers,
etc.

There can be multiple implementations of an ISA



Logic circuits

Fundamental building blocks: AND, OR, NOT

Very simple: one bit operands

Use these building blocks to create ALUs, memories, etc.

Device level

Technologies: CMOS, NMOS, GaAs, etc.

Solid-state physics, electrical engineering


