Mathematics 3670: Computer Systems Introduction

Dr. Andrew Mertz

Mathematics and Computer Science Department Eastern Illinois University

Fall 2012

What	When
Read Chapter 1	this week
Read Lab 1 handout	before Thursday
Determine Lab 1 Turing	before Thursday
machine snapshots	
Design Turing machine for halving	before Thursday
Complete Lab 1	this Thursday
Submit Lab 1 work	on/before next Thursday

The big picture

- Complex systems can be organized as a hierarchy of abstractions
- Bottom level is most basic; upper levels appear most complex
- We will study this hierarchy from the bottom up
- Key idea: how is level $N+1$ implemented given level N ?
- Ultimate aim - understand how the top level is achieved: no magic allowed!

A hierarchy

Problem solving with computers

- Begin with a problem statement
- What are the inputs?
- What are the desired outputs?
- What is the relationship between inputs and outputs?
- Design an algorithm, which will transform inputs to outputs
- How do we express the algorithm?

Ultimately, we want the algorithm to become a well-defined pattern of electrons flowing within a physical computer

A simple problem

- Input: A non-negative integer n
- Output: $n \bmod 3$

To design an algorithm for this problem, we need to know:

- what primitive operations are available
- what abstraction level is appropriate

Depending on the abstraction level, we may also need to be aware of data representation

The Turing machine

- Proposed in 1936 by English mathematician Alan Turing
- Can be used to formalize the idea of algorithm
- Is simple to describe
- Like modern computers, operates at a very basic level: any one step within a computation doesn't do very much

The Turing machine: basic ingredients

- A tape, divided into squares - infinite in both directions
- A read/write head which can inspect and change the contents of one square on the tape
- A finite control unit which remembers the "state"
- A set of states with one initial state
- A subset of states called final states
- A finite table of actions which controls how the machine makes one computational step

Turing machine actions

Any one action of the Turing machine is described by five components:

- current state
- current symbol
- symbol to write
- next state
- direction to move read/write head: left, right, stay For example, $\left(q, 0,1, q^{\prime}, L\right)$ tells the machine "if in state q the read/write head is scanning the symbol 0 , then overwrite it with the symbol 1 , switch to state q^{\prime} and move the read/write head one step to the left"

Turing machine actions

The action $\left(q, 0,1, q^{\prime}, L\right)$ can be viewed as an edge in a directed graph:

We can describe a Turing machine with a collection of actions like these, giving us a labeled, directed graph

Turing machines: one computation step

Computing functions with Turing machines

Back to the mod 3 problem

- We will represent n in unary

For input 35 , place 35 consecutive 0 's on the tape
We want to end up with $35 \bmod 3=2$, i.e., 2 consecutive 0 's

- Division by 3 can be accomplished by repeated subtraction
- Challenge: what states and transitions are needed?

Let's think about it. . .

A Turing machine solution for the mod 3 problem

Simulating a Turing machine

Live demo of JFLAP

Understanding the mod 3 Turing machine

- The q_{0}, q_{1}, q_{2} cycle subtracts 3 on each complete loop
- q_{0} - so far, we have removed $3 t$ zeros
- q_{1} - so far, we have removed $3 t+1$ zeros
- q_{2} - so far, we have removed $3 t+2$ zeros
- $q_{2} \rightarrow q_{3} \rightarrow q_{4}$ writes 00 , then halts
- $q_{1} \rightarrow q_{4}$ writes 0 , then halts
- $q_{0} \rightarrow q_{4}$ writes \square, then halts

Turing machines as black boxes

Black box view is an essential abstraction:

- Hides inessential detail
- Allows for understanding of "big picture"

Universal computational device (Turing, 1936)

- $T_{\bmod 3}$ does one task and one task only
- If you want to perform some other task, you need a different machine
- Could we design one machine that can do the work of any other machine?
- Yes! This is the machine we call U - the universal machine

- U simulates what M would do - a programmable computer!

Turing's thesis

If an algorithm exists for some problem, there is an equivalent Turing machine

Turing's work provides a foundation for understanding the limits of computation - what is possible to compute and what is impossible to compute

Important idea \#1 (textbook)

All computers (big, small, fast, slow, ...) are capable of
computing exactly the same things, given enough time
and enough memory

Important idea \#2 (textbook)

Problems we wish to solve with a computer are stated in some natural language, such as English. Ultimately, these problems are solved by electrons running around inside the computer. To achieve this, a sequence of systematic transformations takes place. At the lowest levels, very simple tasks are being performed.

Problem statement

- Stated in a natural language, like English
- We must avoid any ambiguity
- Misunderstandings at this level will cause many issues later in the development, increasing development cost, delaying completion
- Obtaining an accurate specification of the problem is often difficult

The algorithm: essential ingredients

- Some number of inputs
- Some number of outputs
- Definiteness property: each step must be precisely defined
- Effectiveness property: each step must be something that can be carried out by a person in a finite amount of time
- Finiteness property: the algorithm, when followed, must terminate after a finite number of steps

Definiteness - you be the judge

- Suppose m and n are two arbitrary integers; positive, zero, or negative
- We are devising an algorithm that uses "integer" division, with quotient and remainder; one step is:
let k be the remainder of $m \div n$
- For definiteness, we need a precise definition of the action
- Do we have that?

Effectiveness - you be the judge

- Suppose we are devising an algorithm which uses floating point arithmetic; one step is:
if there are 7 consecutive 3 's in the decimal expansion of π then...
- For effectiveness, each step must be something that can be
- basic enough to be carried out by a person
- completed in a finite amount of time
- Do we have that?

Finiteness - you be the judge

- Suppose we are computing with exact, rational arithmetic Let x be $1 / 7$
Determine m and $d_{1}, d_{2}, \ldots, d_{m}$ so that

$$
0 . d_{1} d_{2} \ldots d_{m}=x
$$

- For finiteness, each step must terminate after some finite number of steps
- Do we have that?

From algorithms to programs

- To implement an algorithm, we need a programming language
- High level: Java, C++, C, COBOL, FORTRAN, Python, Perl, Prolog, etc.
- Low level: Assembly language
- High level - machine independent
- Low level - tied to a specific architecture

The ISA - Instruction Set Architecture

- Ultimately, programs are expressed as patterns of 0's and 1's: machine language
- Translators (compilers and assemblers) perform conversion, producing machine language from higher levels
- ISA specifies:
- instruction set (what operations are possible?)
- data types (e.g., integer vs. floating point, range and precision)
- addressing modes (how is an operand located in the memory?)
- Typical ISAs: Intel x86, HP PA-RISC, Sun Sparc, ARM, Motorola 68k, etc.

Microarchitecture

- microarchitecture: implementation of an ISA
- To add x to y requires lower level details, register transfers, etc.
- There can be multiple implementations of an ISA

Logic circuits

- Fundamental building blocks: AND, OR, NOT
- Very simple: one bit operands
- Use these building blocks to create ALUs, memories, etc.

Device level

- Technologies: CMOS, NMOS, GaAs, etc.
- Solid-state physics, electrical engineering

