
Chapter 5
The LC-3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-2

Instruction Set Architecture

ISA = All of the programmer-visible components
 and operations of the computer

•  memory organization
Ø  address space -- how may locations can be addressed?
Ø  addressibility -- how many bits per location?

•  register set
Ø  how many? what size? how are they used?

•  instruction set
Ø  opcodes
Ø  data types
Ø  addressing modes

ISA provides all information needed for someone that wants to
write a program in machine language
(or translate from a high-level language to machine language).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-3

LC-3 Overview: Memory and Registers
Memory

•  address space: 216 locations (16-bit addresses)
•  addressability: 16 bits

Registers

•  temporary storage, accessed in a single machine cycle
Ø accessing memory generally takes longer than a single cycle

•  eight general-purpose registers: R0 - R7
Ø each 16 bits wide
Ø how many bits to uniquely identify a register?

•  other registers
Ø not directly addressable, but used by (and affected by)

instructions
Ø PC (program counter), condition codes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-4

LC-3 Overview: Instruction Set
Opcodes

•  15 opcodes
•  Operate instructions: ADD, AND, NOT
•  Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
•  Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
•  some opcodes set/clear condition codes, based on result:

Ø N = negative, Z = zero, P = positive (> 0)
Data Types

•  16-bit 2’s complement integer
Addressing Modes

•  How is the location of an operand specified?
•  non-memory addresses: immediate, register
•  memory addresses: PC-relative, indirect, base+offset

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-5

Operate Instructions
Only three operations: ADD, AND, NOT

Source and destination operands are registers

•  These instructions do not reference memory.
•  ADD and AND can use “immediate” mode,

where one operand is hard-wired into the instruction.

Will show dataflow diagram with each instruction.

•  illustrates when and where data moves
to accomplish the desired operation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-6

NOT (Register)

Note: Src and Dst
could be the same register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-7

ADD/AND (Register) this zero means “register mode”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-8

ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-9

Using Operate Instructions
With only ADD, AND, NOT…

•  How do we subtract?

•  How do we OR?

•  How do we copy from one register to another?

•  How do we initialize a register to zero?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-10

Data Movement Instructions
Load -- read data from memory to register

•  LD: PC-relative mode
•  LDR: base+offset mode
•  LDI: indirect mode

Store -- write data from register to memory

•  ST: PC-relative mode
•  STR: base+offset mode
•  STI: indirect mode

Load effective address -- compute address,
save in register

•  LEA: immediate mode
•  does not access memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-11

PC-Relative Addressing Mode
Want to specify address directly in the instruction

•  But an address is 16 bits, and so is an instruction!
•  After subtracting 4 bits for opcode

and 3 bits for register, we have 9 bits available for address.

Solution:

•  Use the 9 bits as a signed offset from the current PC.

9 bits:
Can form any address X, such that:

Remember that PC is incremented as part of the FETCH phase;
This is done before the EVALUATE ADDRESS stage.

255offset256 +≤≤−
255PCX256PC +≤≤−

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-12

LD (PC-Relative)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-13

ST (PC-Relative)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-14

Indirect Addressing Mode
With PC-relative mode, can only address data
within 256 words of the instruction.

•  What about the rest of memory?

Solution #1:

•  Read address from memory location,
then load/store to that address.

First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-15

LDI (Indirect)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-16

STI (Indirect)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-17

Base + Offset Addressing Mode
With PC-relative mode, can only address data
within 256 words of the instruction.

•  What about the rest of memory?

Solution #2:

•  Use a register to generate a full 16-bit address.

4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are used
as a signed offset.

•  Offset is sign-extended before adding to base register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-18

LDR (Base+Offset)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-19

STR (Base+Offset)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-20

Load Effective Address
Computes address like PC-relative (PC plus signed offset)
and stores the result into a register.

Note: The address is stored in the register,

 not the contents of the memory location.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-21

LEA (Immediate)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-22

Example
Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1 ← PC – 3 = x30F4

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2 ← R1 + 14 = x3102

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[PC - 5] ← R2
M[x30F4] ← x3102

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ← 0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2 ← R2 + 5 = 5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14] ← R2
M[x3102] ← 5

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1
R3 ← M[M[x30F4]]

R3 ← M[x3102]
R3 ← 5

opcode

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-23

Control Instructions
Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch

•  branch is taken if a specified condition is true
Ø signed offset is added to PC to yield new PC

•  else, the branch is not taken
Ø PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
•  always changes the PC

TRAP
•  changes PC to the address of an OS “service routine”
•  routine will return control to the next instruction (after TRAP)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-24

Condition Codes
LC-3 has three condition code registers:

 N -- negative
 Z -- zero
 P -- positive (greater than zero)

Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times

•  Based on the last instruction that altered a register

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-25

Branch Instruction
Branch specifies one or more condition codes.
If the set bit is specified, the branch is taken.

•  PC-relative addressing:
target address is made by adding signed offset (IR[8:0])
to current PC.

•  Note: PC has already been incremented by FETCH stage.

•  Note: Target must be within 256 words of BR instruction.

If the branch is not taken,
the next sequential instruction is executed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-26

BR (PC-Relative)

What happens if bits [11:9] are all zero? All one?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-27

Using Branch Instructions
Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

R1 ← x3100
R3 ← 0

R2 ← 12

R2=0?

R4 ← M[R1]
R3 ← R3+R4
R1 ← R1+1
R2 ← R2-1

NO

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-28

Sample Program
Address Instruction Comments

x3000 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 R1 ← x3100 (PC+0xFF)

x3001 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 R3 ← 0

x3002 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ← 0

x3003 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 R2 ← 12

x3004 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 If Z, goto x300A (PC+5)

x3005 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 Load next value to R4

x3006 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 Add to R3

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 Increment R1 (pointer)

X3008 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 Decrement R2 (counter)

x3009 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 Goto x3004 (PC-6)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-29

JMP (Register)
Jump is an unconditional branch -- always taken.

•  Target address is the contents of a register.
•  Allows any target address.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-30

TRAP

Calls a service routine, identified by 8-bit “trap vector.”

When routine is done,
PC is set to the instruction following TRAP.
(We’ll talk about how this works later.)

vector routine

x23 input a character from the keyboard

x21 output a character to the monitor

x25 halt the program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-31

Another Example
Count the occurrences of a character in a file

•  Program begins at location x3000
•  Read character from keyboard
•  Load each character from a “file”

Ø File is a sequence of memory locations
Ø Starting address of file is stored in the memory location

immediately after the program
•  If file character equals input character, increment counter
•  End of file is indicated by a special ASCII value: EOT (x04)
•  At the end, print the number of characters and halt

(assume there will be less than 10 occurrences of the character)

A special character used to indicate the end of a sequence
is often called a sentinel.

•  Useful when you don’t know ahead of time how many times
to execute a loop.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-32

Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char
from keybd

(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-33

Program (1 of 2)
Address Instruction Comments

x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ← 0 (counter)

x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 ← M[x3102] (ptr)

x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 Input to R0 (TRAP x23)

x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ← M[R3]

x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 ← R1 – 4 (EOT)

x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 If Z, goto x300E

x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 ← NOT R1

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 ← R1 + 1

X3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 ← R1 + R0

x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 If N or P, goto x300B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-34

Program (2 of 2)
Address Instruction Comments

x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 ← R2 + 1

x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 ← R3 + 1

x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ← M[R3]

x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 Goto x3004

x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0 ← M[x3013]

x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 ← R0 + R2

x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Print R0 (TRAP x21)

x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT (TRAP x25)

X3012 Starting Address of File

x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII x30 (‘0’)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-35

LC-3
Data Path
Revisited

Filled arrow
 = info to be processed.

Unfilled arrow
 = control signal.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-36

Data Path Components
Global bus

•  special set of wires that carry a 16-bit signal
to many components

•  inputs to the bus are “tri-state devices,”
that only place a signal on the bus when they are enabled

•  only one (16-bit) signal should be enabled at any time
Ø control unit decides which signal “drives” the bus

•  any number of components can read the bus
Ø register only captures bus data if it is write-enabled by the

control unit

Memory

•  Control and data registers for memory and I/O devices
•  memory: MAR, MDR (also control signal for read/write)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-37

Data Path Components
ALU

•  Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

•  Output goes to bus.
Ø used by condition code logic, register file, memory

Register File

•  Two read addresses (SR1, SR2), one write address (DR)
•  Input from bus

Ø result of ALU operation or memory read
•  Two 16-bit outputs

Ø used by ALU, PC, memory address
Ø data for store instructions passes through ALU

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-38

Data Path Components
PC and PCMUX

•  Three inputs to PC, controlled by PCMUX
1.  PC+1 – FETCH stage
2.  Address adder – BR, JMP
3.  bus – TRAP (discussed later)

MAR and MARMUX

•  Two inputs to MAR, controlled by MARMUX
1.  Address adder – LD/ST, LDR/STR
2.  Zero-extended IR[7:0] -- TRAP (discussed later)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5-39

Data Path Components
Condition Code Logic

•  Looks at value on bus and generates N, Z, P signals
•  Registers set only when control unit enables them (LD.CC)

Ø only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit – Finite State Machine

•  On each machine cycle, changes control signals for next phase
of instruction processing
Ø who drives the bus? (GatePC, GateALU, …)
Ø which registers are write enabled? (LD.IR, LD.REG, …)
Ø which operation should ALU perform? (ALUK)
Ø …

•  Logic includes decoder for opcode, etc.

