
Mat 3770

Steiner Trees

Spring 2014

1

Topics

I Background, Definitions, and Prior Theorems

I Initial Algorithms

I Theoretical Work

I Improved Performance Algorithms

I Conclusions

2

Motivation for Studying Steiner Trees

Applications

I Communications networks

I Mechanical & Electrical systems in buildings and along streets

I Wire layout in VLSI chip design

VLSI Chip Design

Given a collection of cells and a collection of nets, find a way to
position the cells (placement) and run the wires for net

connections (routing) so the wires are short with as few vias as
possible, and the whole layout uses a minimum amount of area.

3

Gate Arrays
I Custom vs Semi–custom chip design

I A two dimensional array of replicated transistors fabricated just
short of the interconnection phase, allowing customized
connections to define the overall circuits for semi–custom design
chips.

I The interconnections are implemented on a rectangular grid in
the channels between the cells.

Placement Interconnect

4

Fermat’s Problem

I In the early 1600’s, Pierre Fermat posed the problem:

Given a triangle, find the point in the plane such that the
sum of the distances to the vertices is minimized.

I Evangelista Torricelli solved this problem in 1659:

If all angles are less than 120o , then P is the point from
which each side of the triangle subtends an angle of 120o ,
else it is the vertex of largest measure.

5

Steiner’s Problem

In the early 1800’s, Jacob Steiner formalized the problem
mathematically and generalized it to n points:

Given n points in a plane, find a connected system of
straight line segments of shortest total length such
that any two of the given points can be joined by a
path consisting of segments of the system.

6



Spanning Trees

Related Problem: Minimal Spanning Trees

A

C D

E

F

G

B

Steiner Minimal Trees: shorten trees by adding points

A

D

E

F

G

B

C

7

Shortest Rectilinear Steiner Spanning Tree Problem

Connecting a set of points in the plane with a connected
collection of vertical and horizontal lines with minimal overall

length.

Steiner Spanning Tree

Shortest Rectilinear

flip connections and take out overlaps

Spanning Tree

Rectilinear Minimal

8

Upper and Lower Bounds
Theorem. (Hwang) An SRSST over a set of points is no smaller
in length than two thirds the length of the RMST over the same
set of points.

SRSSTRMST

This gives us nice upper (Length(RMST))
and lower (23 Length(RMST))

bounds on the length of Steiner trees.

9

Grid & Enclosing Rectangle

I Theorem. (Hannan) An SRSST over a set of points exists on
the grid induced by the points.

I Note: The shortest path between two points is not unique.
Thus a solution to the SRSST Problem in general is not unique.

I The Enclosing Rectangle is the smallest rectangle containing
the point set. Any SRSST must be at least half the perimeter of
the enclosing rectangle. (Providing another lower bound.)

10

Grid Segments

j

k

q

a cb

ed

r

h

o

v

i

p

w x

l

s t

m

f g

n

u

Points and Their Induced Grid

Number of Segments
(Horizontal & Vertical) × n nodes × (n − 1) edges

4 points: 2 × 4 × 3 = 24 grid segments
5 points: 2 × 5 × 4 = 40 grid segments
6 points: 2 × 6 × 5 = 60 grid segments

11

NP–Complete Problem

Theorem. (Garey and Johnson) The problem of determining the
minimum length of an optimal rectilinear Steiner tree for a set of
points in the plane is NP–Complete.

This implies it is probable that finding an optimal solution will take
worse than polynomial time.

That may be alright for small problems, but heuristic algorithms
are still needed.

Heuristic Algorithms

Non–optimal, but usually close
& have performance guarantees

12



Research Sequence

I Extended Kruskal

I Näıve Branch and Bound (optimal)

I Structural Theorems

I Pretaxial & Epitaxial Branch and Bound (optimal)

I MST–based Direction Assignment

I Simulated Annealing

I Stochastic Evolution

13

Extended Kruskal
I Based on Kruskal’s MST algorithm:

Place all points in individual subtrees

Repeat

Connect closest subtrees

Until a single tree is formed

I Two versions with different connection schemes:

All grid intersection Only corner

points considered points considered

I Theorem. The EK algorithm is correct and produces an RSST
no larger than the RMST.

Guarantees result is no worse than 150% of optimal
.

14

Näıve Branch and Bound

Idea: look at all combinations of grid edges.

General Branch and Bound Method

Examine all feasible solutions
in an orderly manner:

Organize the search space as a tree

Search the tree using a depth first approach
Using lower and upper bounds

to decrease the search

15

Grid and Search Tree

lk

jih

f g
c d e

ba

Induced Grid over three points

b

b cbc

a

a

a

ab

ababc ac

. . . etc . . .

Näıve Search Tree

16

Pruning the Search Tree

I A small search space is needed to feasibly complete the tree
traversal, so we prune the tree:

I lower bound: larger of 2
3 RMST or 1

2 perimeter
I upper bound: RMST or result of heuristic

I If collection of grid edges is
I too large — discard
I too short — discard
I if they form a tree and it’s shorter than current known tree, keep

it

I Unfortunately, there were still too many combinations to check

17

Implementation
I All combinations of grid edges considered

Search Space: O(22n(n−1))
3 points yield 212 or 4096 combinations

I Implementation: essentially used a binary odometer where
1 = IN and 0 = OUT .

I Order the grid edges:

l k j i h g f e d c b a

0 0 0 0 0 0 0 1 1 0 1 0

The 1’s at e, d , and b represent a forest containing those edges
and no others.

I Determining whether the edges formed a tree (i.e., if they are
connected) was very time consuming and the Search Space was
too large.

18



Structural Theorems — Definitions

Idea: reduce the number of configurations must consider

I A line is a connected collection of one or more grid segments,
all with the same orientation (either horizontal or vertical).

I A via occurs the intersection of a horizontal and a vertical grid
segment.

I A non–repetitive set of points contains no duplicate x or y
coordinates. I.e., all x and y coordinates are unique.

A point set can be perturbed to meet this requirement.

19

Structural Theorems — Theorems

I Theorem. There exists an SRSST over a set of n points which
has at most n lines.

I Theorem. If an SRSST has n lines, it has n− 1 vias (the fewest
possible).

I Theorem. Given a non–repetitive point set with at most one
corner point, there exists an SRSST over the set which contains
an inner line from an arbitrary outer point.

I Corollary. If a non–repetitive point set contains a corner point,
then there is an SRSST over the set of points which contains an
arbitrarily chosen outer line adjacent to the corner point.

20

More Branching and Bounding

The previous (and other) theoretical work was used to develop two
new Branch and Bound algorithms.

I Pretaxial — grow a collection of lines, one through each point,
then check to see if it forms a tree

I Epitaxial — grow a connected set of lines, one through each
point, then check to see if it’s shortest

21

Pretaxial Branch and Bound

lk

jih

f g
c d e

ba

Induced Grid over Point Set

Line Table

top bottom right

a di fg

ab i g

c k e

ch l j

kl ej

Lines listed in red

have been eliminated

22

Pretaxial Search Tree

lk

jih

f g
c d e

ba

a ab

g g g ge e e e jjjj

l di i l di i

g je g e j

23

Tuning the Algorithm

I To aid in pruning, we can order both the points within the table
as well as the lines for each point.

I As we traverse the tree, we backtrack (prune) whenever our
collection of lines:

I contains a line through each point (reached leaf)

I contains a cycle (too long)

I is longer than the best tree found so far (discard immediately)

I will never span the points (too short)

I Theorem. The Pretaxial Branch and Bound search tree
contains an SRSST over the set of points.

24



The Algorithm

Procedure ExamineTree(PointSet,

Edges, lower, Best)

Initialize(T)

status = continue

Repeat

if not Feasible(T, E)

status = backtrack

else if Complete(T, P)

if Better(T, Best)

Replace(Best, T)

status = backtrack

if status = backtrack

if UnexpandedNode(T, E)

Backtrack(T, E)

AddEdge(T, E)

status = continue

else

status = stop

else

if LastConfig(T, E)

status = stop

else

if AtLeaf(T, E)

Backtrack(T, E)

AddEdge(T, E)

Until status = stop

25

Determining Whether Tree Is Connected

I How to determine whether the forest formed by edges from the
table is connected (and thus a tree)?

I Since only horizontal and vertical lines can connect, these
connections form a Bipartite Graph.

I Thus, vertices can be divided into two sets such that no two
vertices in the same set are connected by an edge.

I Apply a depth–first search, marking vertices as they are visited.
If all vertices are marked in that process, the tree is connected.

horizontal vertical

vs

a

di

a di

g e

26

Epitaxial Approach — “Grow your own tree”

I Ensure new edges to be added to the tree intersect an edge
already in the tree

I Need an intersecting lines table

I Form a pool of candidate lines from which to choose next line

I Still need only one line through each point

a ab

di di

egg

Only 3 feasible configurations result

27

Notes

When reducing the Search Space, be careful not to eliminate all
optimal solutions: you must be able to show or prove at least one
optimal solution still exists and will be found.

A possible heuristic: do a study to see where in the search tree
Best is found. For example, an optimal solution for this problem
was found in the first three branches of the root, so perhaps only
look there. (The edges were ordered smallest to largest at each
level.)

It may also be possible to parallelize the search — hand off
subtrees to various processors to search and report back.

28

Heuristic Algorithms

The MST–Based Depth First Direction Assignment
Algorithm, based on the Structural Theorems

Idea: represent a spanning tree as connection pairs (of vertices
or points), then force each point to have one and only one line
associated with it (either horizontal or vertical), resulting in
intersection pairs.

Importance: A new data structure to represent a special class
of Steiner Trees.

29

RMST Representation

Given n vertices, there will be n − 1 connection pairs

Graphical versions are not unique.

MST list: <A, B>

<B, C>

<B, D>

<D, E>

A

D

B

C

E

A

D

B

C

E

Version 1 Version 2

30



We want to associate one line per point, so assign a direction to
each point, either Horizontal or Vertical.

Once we have obtained a tree, we can form another tree from it by
flipping the direction of the line associated with each point.

31

Depth–First Processing: Direction Assignment

A

D

B

C

E
A

D

B

E

C

Beginning Sweep Continuing Sweep

A

D

B

E

C

A

D

B

E

C

Tree 1 Tree 2

32

RSST Representation

I Intersection Pairs define a unique tree.

I Given a Minimum Spanning Tree, it is easy to process:

I build a Pairs Table, detailing which points connect to each point

I Use Breadth–First processing (a ripple effect)

33

Tree 1

Intersection Pairs
— <H, V> —

<B, A>

<B, C>

<B, D>

<E, D>

Graphical Representation

A

D

B

C

E

34

Tree 2 — Built by Swapping Orientations

Intersection Pairs
— <H, V> —

<A, B>

<C, B>

<D, B>

<D, E>

Graphical Representation

A

D

B

C

E

35

More Theorems

Theorem. Using the set of direct connections denoted by an
RMST over a set of points, we can always derive from them
exactly two Rectilinear Steiner Spanning Trees containing one
line per point over the same set of points.

Theorem. The MST–Based Depth First Direction Assignment
Algorithm is correct and produces a tree which is no longer than
1.5 times optimal.

Theorem. Any Rectilinear Steiner Tree of n lines over n points
may be represented by this data structure.

36



Simulated Annealing

Idea: Using the Intersection pairs data structure, apply the
Simulated Annealing algorithm (Kirkpatrick, Gelat & Vecchio)
to the RSST Problem.

I Simulated Annealing is based on a strong analogy between the
physical annealing process of solids and the process of solving
large combinatorial optimization problems.

I Two phases of annealing:
I Melting the solid so particles arrange themselves randomly —

must have sufficiently high initial temperature.

I Careful temperature reduction until particles arrange
themselves in the ground state of the solid where the energy of
the system is minimal

37

The Model

Two criteria for obtaining the ground state:

I Sufficiently high maximum temperature

I Sufficiently slow cooling schedule

To model the annealing process we need:

1. Definition of a configuration, and an initial feasible solution
described as such a configuration: Intersection Pairs.

2. A method for generating a neighboring configuration, which
must also represent a feasible solution: Randomly choose a
pair to replace.

3. A method for evaluating the objective function of the problem
for any configuration: length of tree.

38

Configuration & Random Neighbor

I Randomly choose pair #3 to replace

I Always results in two subtrees

I Neighbor is longer, but may still be accepted

(a) Initial
<A, B>

<C, B>

<D, B>

<D, E>

A

B

C

D

E

(b) Neighboring
<A, B>

<C, B>

<C, E>

<D, E>

A

B

C

D

E

39

Stochastic Evolution

Idea: Using the Intersection pairs data structure, apply the
Stochastic Evolution algorithm (Saab, Rao, ’91) to the RSST
Problem.

Stochastic Evolution is an adaptive heuristic combinatorial
optimization algorithm based loosely on biological evolution.

40

Similar to Simulated Annealing

I Stochastic Evolution uses the same configurations as Simulated
Annealing

I Neighboring configurations are derived by compound moves
instead of the simple moves of Simulated Annealing

I Stochastic Evolution keeps track of the best found so far,
whereas Simulated Annealing converges to a solution

I Doesn’t require such careful tuning of control parameters; used
less time and was more effective

41

Simple vs Compound Moves

3 simple moves 1 compound movedesired relocation

42



SE Algorithm

SteinerSE(Config, Best, InitialMaxOver, MaxCount)

// PREConditions:

Config :an initial feasible configuration

given as intersection pairs

InitialMaxOver :initial maximum negative gain

MaxCount :approximate number of iterations

before improvement is found

// POSTCondition:

Best :configuration of least cost

found by algorithm

// Initializations

Best = Config

Count = 0

MaxOver = InitialMaxOver

43

SE Algorithm, Continued

// Iteratively search for better solution

REPEAT

// Create new solution

PreCost = Length(Config)

Perturb(Config, MaxOver)

PostCost = Length(Config)

Update(MaxOver, PreCost, PostCost, InitialMaxOver)

if (PostCost < Length(Best)

// if improved, save best and reward counter

Best = Config

Count -= MaxCount

else

Count++

UNTIL Count > MaxCount

44

Theorem. The SteinerSE Algorithm produces a tree which is no
longer than 1.5 times optimal.

Table 1. Empirical Results SteinerSE Statistics

Set Size MST cost Time % Improvement

10 50 1.5 10.8

15 70 6 9.9

20 125 21 11.1

25 125 30 10.9

30 120 39 12.3

35 120 57 10.9

50 70 91 11.7

100 40 550 11.1

Overall Ave: 11.1

45

Table 2. Comparison of Results to Best Found

Algorithm Best of 60 % of Best % Off

EK1 21 35.0 2.073

EK2 25 41.7 2.205

EK1 & EK2 25 41.7 2.124

MDFDA 17 28.3 4.039

SE 55 91.7 0.864

46

Table 3. Comparison of Reported Results

Researchers Method % Improvement

Lee et al Prim 9

Hwang Prim 9

Bern et al Kruskal 9

Richards line–sweep 4

Lewis et al line–sweep 8.4

Smith et al geometric 8

Ho et al edge–flip 9

Kahng et al 1–Steiner 10.9

SteinerSe Combinatorial Optim. 11.1

47

Conclusions

When time is not limited:

I For 12 or fewer points: Epitaxial Branch & Bound

I For up to 20 points: Stochastic Evolution

I For 35+ points: ExtendedKruskal

Otherwise:

I ExtendedKruskal

I DirectionAssignment, if nearly linear time is required

All of our algorithms have a performance guarantee

48


