

### Approach

- > The structure of an optimal solution is recursively defined.
- ► The value of an optimal solution is computed in a **bottom-up** fashion.
- ► An example: Fibonacci numbers

$$F_1 = 1, F_2 = 1, F_n = F_{n-2} + F_{n-1}$$

### **Problem Definition**

Generally: Given a knapsack with weight capacity K and n objects of weights  $w_1, w_2, \ldots, w_n$ , is it possible to find a collection of objects such that their weights add up to K, i.e.

find 
$$w_{i_1}, w_{i_2}, \dots, w_{i_m}$$
, such that  $K = \sum_{j=1}^m w_{i_j}$ ?

For example, given a list: { 12, 10, 40, 3, 11, 26, 37, 28, 9, 18 }, does any subset add up to 72?

yes: { 12, 3, 22, 37, 9 }

The Basic Problem

### This Problem Has Many Variations

- Allow same weights to be used multiple times
- Ask: how close to full (without going over) can we get? I.e., if  $W = \{w_1, w_2, \dots, w_n\}$ , we want to minimize

$${\mathcal K} - \sum_{w \in {\mathcal W}'} w \,\, {\it over} \,\, {\it all} \,\, {\mathcal W}' \subseteq {\mathcal W}$$

subject to the constraint that

$$K - \sum_{w \in W'} w \ge 0$$

Assume there's a corresponding value v<sub>i</sub> for each w<sub>i</sub> (e.g., gold's value & its weight). Maximize the total value given that the weight must be at most K:

$$\textit{Maximize over } I \subseteq \{1, \dots, n\}, \sum_{i \in I} v_i, \textit{ given } \sum_{i \in I} w_i \leq K$$

Is there I ⊆ {1,..., n} such that ∑<sub>i∈I</sub> w<sub>i</sub> = K
Let predicate
P[i, k] = { true : if ∃ I ⊆ {1,..., i} ∋ ∑<sub>j∈I</sub> w<sub>j</sub> = k. false : otherwise
and we want the value of P[n, K]



Worksheet

- ▶ What is our complexity for finding *P*[*n*, *K*]?
- ▶ We have to fill in the table out to the  $K^{th}$  column for n-1 rows, then consider the  $n^{th}$  row at column K if  $P[n-1, K] \neq true$ .
- ► Thus: O((n-1)K+1) = O(nk)which could be bad if  $K = 2^n$ .

# Follow-up A Variation On The Problem Given a collection of items, T = {t<sub>1</sub>,...,t<sub>n</sub>} where t<sub>i</sub> has (integer) size s<sub>i</sub> and a set B of bins each with a fixed (integer) capacity b. The we can trace back through the table to find which w<sub>i</sub> were used. Note that recapturing the subset would take O(n) time. The goal is to pack all items, minimizing the number of bins used.

| An Example                                                                                     | Solution Methods                                                                    |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Suppose there are 7 items<br>with sizes 1, 4, 2, 1, 2, 3, 5, and<br>the bin capacity $b = 6$ . | <ul><li>Exhaustive Search</li><li>Greedy Approach</li></ul>                         |
| One (optimal) solution:                                                                        | <ul> <li>Dynamic Programming</li> <li>Hierarchical or Divide—and—Conquer</li> </ul> |
| Bin 1: 1 and 5 = 6<br>Bin 2: 4 and 2 = 6<br>Bin 3: 1, 2, and 3 = 6                             | <ul> <li>Mathematical Programming</li> </ul>                                        |
| 13                                                                                             | 14                                                                                  |

| Exhaustive Search                                                                                                                                                                                                                                                                       | Greedy Approach                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Many Possibilities — One is:</li> <li>Find all partitions of the items — from all in a single set, to all items in separate sets.</li> <li>Determine the feasible partitions, and</li> <li>choose one of the feasible solutions that uses a minimum number of bins.</li> </ul> | <ul> <li>Optionally, can sort items in increasing order by size:<br/>1, 1, 2, 2, 3, 4, 5</li> <li>Pack a b in with the items given in order until the bin is full</li> <li>get another (empty bin) and keep packing until all items are in bins.</li> <li>Results:<br/>Bin 1 : 1, 1, 2, 2 Bin 2 : 3 Bin 3 : 4 Bin 4 : 5<br/>Suboptimal since it uses 4 bins instead of 3</li> </ul> |
| 15                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                     |
| Dynamic Programming                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                         | <ul> <li>Items: 1, 4, 2, 1, 2, 3, 5</li> <li>Step 1 : place 1</li> <li>Step 2 : place 4</li> </ul>                                                                                                                                                                                                                                                                                  |

18

Strategy: solve the problem for the first k items, then consider the  $(k+1)^{st}$  iteration and determine the best way to place the  $(k+1)^{st}$  item in previous (or a new) bins.

17

Step 1 : place 1 1
Step 2 : place 4 1, 4
Step 3 : place 2 1, 4 2
Step 4 : place 1 1, 1, 4 2
Step 5 : place 2 1, 1, 4 2, 2
Step 6 : place 3 1, 1, 4 2, 2 3
Step 7 : place 5 1, 1, 4 2, 2 3 5



### Linear Programming A linear programming problem may be stated as follows: Given real numbers $b_1, \ldots, b_m, c_1, \ldots, c_n$ , and $a_{ij}$ (for $1 \le i \le m$ and $1 \le j \le n$ ), minimize (or maximize) the function: $Z(X_1, \ldots, X_n) = c_1X_1 + \cdots + c_nX_n$ subject to the conditions: $a_{11}X_1 + a_{12}X_2 + \cdots + a_{1n}X_n$ { $\le, =, \ge$ } $b_1$ $a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n$ { $\le, =, \ge$ } $b_2$ $\cdots$ $a_{m1}X_1 + a_{m2}X_2 + \cdots + a_{mn}X_n$ { $\le, =, \ge$ } $b_m$

## The X<sub>i</sub> are called decision variables Z is the objective function The conditions are called constraints

### Vocabulary

- A solution is any specification of values for the decision variable
- A feasible solution is one in which all the constraints are satisfied
- An infeasible solution leaves one or more of the constraints unsatisfied
- ► An **optimal solution** is a feasible solution which minimizes (maximizes) *Z*
- ► The solution (search) space is the set of all possible configurations of the decision variables.

### Mathematical Programming We can formulate the decision problem in general form as follows: Let U be the set of items, U = {u<sub>1</sub>, u<sub>2</sub>,..., u<sub>n</sub>} Let B be the set of bins, B = {b<sub>1</sub>, b<sub>2</sub>,..., b<sub>k</sub>} For our particular problem, all our b<sub>i</sub> = 6 Form a complete bipartite graph G = (U, B, E), with the goal of assigning an item to one and only one bin

The weight w<sub>ij</sub> (the i<sup>th</sup> item in the j<sup>th</sup> bin) of an edge connecting one vertex u<sub>i</sub> in U and one vertex b<sub>j</sub> in B, is set to s(u<sub>i</sub>), the size of item u<sub>i</sub>.



### A Possible Solution

- ► Step 1: Set the number of bins |*B*| to a lower bound found by dividing the sum of the item sizes by the bin capacity.
- Step 2: Formulate the linear programming problem and use it to find a feasible solution satisfying the set of constraints.
- Step 3: If a solution exists for |B| bins, we're done!
- Step 4: Otherwise, set |B| to |B| + 1 and repeat steps 1 4.

2