
Mat 3770

Bin Packing
or

The Knapsack Problem

Spring 2014

1

Dynamic Programming

I Used when a problem can be partitioned into non–independent
sub–problems

I Solve each sub–problem once; solution is saved for use in other
sub–problems

I Combine solutions of sub–problems into a solution for the
original problem

I Effective when a given sub–problem may arise from more than
one partial set of choices

2

Approach

I The structure of an optimal solution is recursively defined.

I The value of an optimal solution is computed in a bottom–up
fashion.

I An example: Fibonacci numbers

F1 = 1, F2 = 1, Fn = Fn−2 + Fn−1

3

Problem Definition

Generally: Given a knapsack with weight capacity K and n objects
of weights w1,w2, . . . ,wn, is it possible to find a collection of
objects such that their weights add up to K , i.e.

find wi1 ,wi2 , . . . ,wim , such that K =
m∑

j=1

wij ?

For example, given a list: { 12, 10, 40, 3, 11, 26, 37, 28,

9, 18 }, does any subset add up to 72?

yes: { 12, 3, 22, 37, 9 }

4

This Problem Has Many Variations

I Allow same weights to be used multiple times

I Ask: how close to full (without going over) can we get?
I.e., if W = {w1,w2, . . . ,wn}, we want to minimize

K −
∑

w∈W ′
w over all W ′ ⊆W

subject to the constraint that

K −
∑

w∈W ′
w ≥ 0

I Assume there’s a corresponding value vi for each wi (e.g., gold’s
value & its weight). Maximize the total value given that the
weight must be at most K :

Maximize over I ⊆ {1, . . . , n},
∑

i∈I
vi , given

∑

i∈I
wi ≤ K

5

The Basic Problem

I Is there I ⊆ {1, . . . , n} such that
∑

i∈I wi = K

I Let predicate

P[i , k] =

{
true : if ∃ I ⊆ {1, . . . , i} 3∑j∈I wj = k .

false : otherwise

and we want the value of P[n,K]

6

Observation

I P[i , k] =

{
P[i − 1, k] : if wi is not used
P[i − 1, k − wi] : if wi is used

I Furthermore:
I P[i , k] is false if k < 0

I P[i , k] is true for k = 0

I P[1, k] is true IFF k = w1

I So, we can build a table to solve this type of problem.

7

Bin Packing Algorithm

// initialize first row

P[0, 0] = true

for currentWeight := 1 to K

P[0, currentWeight] = false

// calculate rest of rows 1 through n

for i := 1 to n

for currentWeight := 0 to K

P[i, currentWeight] = false

if P[i - 1, currentWeight] then

P[i, currentWeight] = true

else

if currentWeight - wi >= 0 then

if P[i - 1, currentWeight - wi] then

P[i, currentWeight] = true

8

Worksheet

9

Time Complexity

I The idea behind dynamic programming is to build a table
iteratively, where we solve a problem by storing solutions to
subproblems efficiently.

I What is our complexity for finding P[n,K]?

I We have to fill in the table out to the K th column for n− 1 rows,
then consider the nth row at column K if P[n − 1,K] 6= true.

I Thus: O((n − 1)K + 1) = O(nk)
which could be bad if K = 2n.

10

Follow–up

I To make it easier to know which objects were used, we could
mark P[i , currentWeight] if wi was used
(i.e., if P[i − 1, k − wi] = true)

I The we can trace back through the table to find which wi were
used.

I Note that recapturing the subset would take O(n) time.

11

A Variation On The Problem

I Given a collection of items, T = {t1, . . . , tn} where ti has
(integer) size si and a set B of bins each with a fixed (integer)
capacity b.

I A subset of the items can be packed in one bin as long as the
sum of the sizes of the items is less than or equal to b.

I The goal is to pack all items, minimizing the number of bins
used.

12

An Example

Suppose there are 7 items
with sizes 1, 4, 2, 1, 2, 3, 5, and

the bin capacity b = 6.

One (optimal) solution:

Bin 1 : 1 and 5 = 6
Bin 2 : 4 and 2 = 6
Bin 3 : 1, 2, and 3 = 6

13

Solution Methods

I Exhaustive Search

I Greedy Approach

I Dynamic Programming

I Hierarchical or Divide–and–Conquer

I Mathematical Programming

14

Exhaustive Search

Many Possibilities — One is:

I Find all partitions of the items — from all in a single set, to all
items in separate sets.

I Determine the feasible partitions, and

I choose one of the feasible solutions that uses a minimum
number of bins.

15

Greedy Approach

I Optionally, can sort items in increasing order by size:
1, 1, 2, 2, 3, 4, 5

I Pack a b in with the items given in order until the bin is full

I get another (empty bin) and keep packing until all items are in
bins.

I Results:
Bin 1 : 1, 1, 2, 2 Bin 2 : 3 Bin 3 : 4 Bin 4 : 5
Suboptimal since it uses 4 bins instead of 3

16

Dynamic Programming

Strategy: solve the problem for the first k items, then consider the
(k + 1)st iteration and determine the best way to place the
(k + 1)st item in previous (or a new) bins.

17

I Items: 1, 4, 2, 1, 2, 3, 5 Bin capacity: 6

I Step 1 : place 1 1

I Step 2 : place 4 1, 4

I Step 3 : place 2 1, 4 2

I Step 4 : place 1 1, 1, 4 2

I Step 5 : place 2 1, 1, 4 2, 2

I Step 6 : place 3 1, 1, 4 2, 2 3

I Step 7 : place 5 1, 1, 4 2, 2 3 5

18

I Note: order makes a difference in this algorithm.

I If they are sorted in descending order, 5, 4, 3, 2, 2, 1, 1, we
happen to get an optimal solution, but this isn’t guaranteed in
all cases.

I 5, 1 4, 2 3, 2, 1

19

Divide and Conquer

I Partition the problem into 2 subproblems
For example:

1, 4, 2, 1, 2, 3, 5 ⇒ 1, 4, 2, 1 and 2, 3, 5

I Recursively partition each subproblem until each subset can fit
into a bin.

I 1, 4, 2, 1 ⇒ 1, 4 and 2, 1 bins 1 & 2

I 2, 3, 5 ⇒ 2, 3 and 5 bins 3 & 4

I Uses four bins – suboptimal

20

Linear Programming

A linear programming problem may be stated as follows:

Given real numbers b1, . . . , bm, c1, . . . , cn, and aij (for 1 ≤ i ≤ m
and 1 ≤ j ≤ n), minimize (or maximize) the function:

Z (X1, . . . ,Xn) = c1X1 + · · ·+ cnXn

subject to the conditions:

a11X1 + a12X2 + · · ·+ a1nXn {≤, =, ≥} b1

a21X1 + a22X2 + · · ·+ a2nXn {≤, =, ≥} b2

.
am1X1 + am2X2 + · · ·+ amnXn {≤, =, ≥} bm

21

Vocabulary

I The Xi are called decision variables

I Z is the objective function

I The conditions are called constraints

22

Vocabulary

I A solution is any specification of values for the decision variable

I A feasible solution is one in which all the constraints are
satisfied

I An infeasible solution leaves one or more of the constraints
unsatisfied

I An optimal solution is a feasible solution which minimizes
(maximizes) Z

I The solution (search) space is the set of all possible
configurations of the decision variables.

23

Mathematical Programming

We can formulate the decision problem
in general form as follows:

I Let U be the set of items, U = {u1, u2, . . . , un}

I Let B be the set of bins, B = {b1, b2, . . . , bk}
For our particular problem, all our bi = 6

I Form a complete bipartite graph G = (U,B,E), with the goal
of assigning an item to one and only one bin

I The weight wij (the i th item in the j th bin) of an edge
connecting one vertex ui in U and one vertex bj in B, is set to
s(ui), the size of item ui .

24

The χ Function

χij =

{
0 : if i th item not in j th bin
1 : otherwise

25

The objective is to maximize
∑

(i , j)∈E (wij × χij)
Subject to the following four constraints:

1. [0, 1] Constraint: cannot have part of an item in a bin

χij ∈ {0, 1}
2. Capacity Constraint: the sum of the sizes of the items in each

bin cannot exceed its capacity
∑

(wij × χij) ∀i ∈ U ≤ bj ∀j ∈ B

3. Assignment Constraint: each item can only be assigned to
one bin ∑

(χij) ∀j ∈ B = 1 ∀i ∈ U

4. Completeness Constraint: the total number of χij whose
value is 1 is equal to n — every item gets put in some bin.

∑

(i , j)

χij = n

26

A Possible Solution

I Step 1: Set the number of bins |B| to a lower bound found by
dividing the sum of the item sizes by the bin capacity.

I Step 2: Formulate the linear programming problem and use it to
find a feasible solution satisfying the set of constraints.

I Step 3: If a solution exists for |B| bins, we’re done!

I Step 4: Otherwise, set |B| to |B|+ 1 and repeat steps 1 – 4.

27

