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Week 2 — Student Responsibilities

I Reading: Isomorphism, Edge Counting, Planar Graphs

I Homework from Tucker & Rosen

I Attendence Slushily Encouraged
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Section 1.2. Isomorphism

I Two graphs G = (VG ,EG ) and H = (VH ,EH) are said to be
isomorphic if there exists a bijection f : VG → VH 3

< u,w >∈ EG IFF < f (u), f (w) >∈ EH

I I.e., we can relabel the vertices of G to be vertices of H,
maintaining the corresponding edges in G and H; pairs are
adjacent in G IFF pairs are adjacent in H
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I The mapping from VG to VH given by
f(1) = u, f(2) = v, f(3) = w,

f(4) = x, f(5) = y, f(6) = z

is the requisite bijection.
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Isomorphism

I These two graphs are not isomorphic since deg(1) = 4, and no
vertex in graph H has degree 4.
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I Note: degrees are preserved under isomorphism
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Isomorphic Graphs

I Same number of vertices

I Same number of edges

I same number of vertices with a given degree

I corresponding edges are maintained between vertices of same
degree as pre–image.

A graph H = (VH ,EH) is a subgraph of G = (VG ,EG ) if
VH ⊆ VG and EH ⊆ EG .
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Isomorphic Subgraphs

I If we cannot find isomorphic subgraphs, then the graphs are not
isomorphic.
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deg 2: b,d,f,h 3,4,8,7

deg 3: a,c,e,g 1,2,5,6

I Subgraphs containing these (deg 2) vertices must be
isomorphic.

I No edges between b,d,f, or h (within same set), while edges
<3,4> and <7,8> exist. Therefore the two graphs are not
isomorphic.
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Recall

I Matching: Set of edges, none of which share the same
endpoint

I Maximum matching: Maximum cardinality of all matchings

I Edge Cover: Set of vertices which contains at least one
endpoint of all edges in graph
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I Independent Set: Set of vertices no two of which share an
edge

I Maximal Independent Set: Cannot add any other vertex in
the graph and remain independent (i.e., every vertex not in the
set is adjacent to some vertex in the set)

I Maximum Independent Set: Maximum cardinality of all
Independent sets

I Theorem: Given a graph G=(V, E), if S⊂V is independent,
then v−S is an edge cover and vice versa
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Applications

Connected Components

I One of the incentives for developing the Internet was the threat
of war and the fear of having communications between various
installations in the United States severed.

I Given a graph, can we determine if there is a critical edge, one
whose removal disconnects the graph?
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Applications

Edge Cover

The Manhattan Police Department (MPD) knows several heads of
organized crime are meeting in a particular area of the city and
want to keep the streets there under surveillance. Unfortunately,
owing to budget constraints, they need to use the fewest officers
possible.
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How can we determine on which corners to place officers to
maximize their usefulness (the number of adjacent blocks they can
observe) while minimizing the number of officers?
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We can replace the original 14 graph edges with the 8 contiguous
line segments which they comprise, forming another, slightly
different graph to model the problem.
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Applications

Scheduling Problems

Suppose we allowed students to sign up for courses, then scheduled
the courses so the total number of hours needed is minimized, and
no two classes which share students meet at the same time.

This can be modeled with a graph where each class is a vertex,
and an edge between two vertices means they share at least one
student.
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A set of courses can all meet at the same time if there are no
edges between any of them, i.e., they form an independent set.
Thus, we need to find the minimum number of independent sets
that collectively include all vertices.

Consider also that if we find a maximum independent set, we’ll
have a minimum edge cover, and vice versa. Thus, finding a
maximum independent set is equivalent to finding a minimum
edge cover.

15

a

b

c

d

e

f

g

h

i

j

16

Applications

Not everyone has a telephone, nor even a permanent address.
Suppose we needed to get word out “on the street” about a new
program to help the homeless.

We can use a graph to represent this problem. Vertices are people,
and the directed edges between them represent “is able to
contact.”

Because we have so little time, we want to find a minimal subset
of people who can spread the word to the whole group—either
directly or by word of mouth.

17

We want a a vertex basis — a minimal set of vertices with
directed paths to all other vertices.

We can build a directed–path graph for the original graph with
the same vertex set and with a directed edge < pi , pj > added if
there is a directed path from pi to pj in the original graph.
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Best Way to Spread the News Quickly?
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Find a Vertex Basis
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Find a Vertex Basis

A

B

C

D E

F

G

21

Are these graphs isomorphic?
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Note: the complements of isomorphic graphs are isomorphic.

Exercise : Find non–isomorphic directed graphs with three vertices:
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Section 1.3. Edge Counting

I Theorem 1. In any graph, the sum of the degrees of all
vertices is equal to twice the number of edges.

Q1. Given G = (V, E), how many vertices are there in V if
there are 15 edges in E, and all vertices have degree 3?

I Corollary. In any graph, the number of vertices of odd degree
is even.

Q2. How many edges are in Kn, a complete graph over n
vertices?
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Mountain Range Problem

Example 4, which begins on page 29, is worded a bit obscurely.
Part of the homework for this section is to “rephrase” the problem
in simple English.
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Bipartite Graphs and Circuits

I (Recall) The length of a circuit or path is the number of edges
in it.

I Theorem 2. A graph G is bipartite IFF every circuit in G has
even length.
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Section 1.4 Planar Graphs

I A graph is planar if it can be drawn on a plane with no edges
crossing. For example:

The graph on the left can be redrawn with no edges crossing;
therefore, it is a planar graph.
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Figure 1.21a, Pg 35 – Not so Obvious!
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But It Is Planar
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Computer–Related Uses

I Wiring diagrams for each layer on a computer chip — if wires
cross, they share electricity (not good)

I Robotic motion planning (2–D) — plot obstacles, determine
path

I Map Coloring

How many colors are needed to color counties (states, etc.) on
some map in order that adjacent counties all have different
colors?

A map can be modeled by a planar graph.
USA map: states are vertices; edges indicate “share a border”
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Modeling Maps with Graphs
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Maps

I Map: a planar graph with edges as borders and vertices where
borders meet.

I The map coloring problem may be stated as follows:

What is the minimum number of colors needed so

adjacent vertices have different colors?

I Dual Map: make a vertex for each planar face; then an edge
between vertices corresponds to adjacent faces.

An “extra” vertex is added for the unbounded region
surrounding the map:
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Example
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Map Coloring Solution

I Famous conjecture: no planar graph needs more than four
colors.

I This conjecture was “proved” in 1976 by 2 guys at U of I using
a computer for an “exhaustive” proof (i.e., they considered all
possible configurations).

I Many purists didn’t like their proof because it wasn’t elegant!
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The Circle–Chord Method

Problem:
Given a general graph, draw it as a planar graph (if possible)

I The Circle–Chord Method for drawing planar graphs:

1. Find a circuit which contains all (or most) of the vertices in the
graph

2. Draw this circuit as a large circle

3. The rest of the edges (chords) must be either inside or outside
the circle

4. Choose one chord and draw it, say inside the circle

5. This may force some chords inside, some outside

6. Keep adding chords until all are in the graph or until adding a
chord, either inside or out, will cross an existing edge (in which
case the graph is non–planar).
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Example

Find a planar depiction of this graph using the circle–chord
method:
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Begin by finding a circuit that contains all the vertices.
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K3,3

K3,3: a complete bipartite graph with two sets of three vertices,
with each vertex in one set adjacent to the three vertices in the
other set. Is it planar?
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K5

K5: a complete graph of 5 vertices. Is it planar?
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More on Planarity

I Subdividing a graph: adding vertices to the middle of zero or
more edges:

A B A B

Note: subdividing a non–planar graph cannot make it planar.

I K3,3 Configuration: a (sub)graph obtained by subdividing a
K3,3.

I K5 Configuration: a (sub)graph obtained by subdividing a K5.

I Theorem 1. A graph is planar IFF it does not contain a
subgraph that is a K5 or a K3,3 configuration.
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More Theoretical Results

I Theorem 2 (Euler’s Formula). If G is a connected planar
graph with |V | = v and |E | = e, then a planar depiction of G
will always have r = e − v + 2 regions (areas); r is also known
as the number of faces.

I Corollary. If G is a connected planar graph with e > 1,
then e ≤ 3v − 6.

note: This is not an IFF statement. If e 6≤ 3v − 6, the graph is
non–planar; but if e ≤ 3v − 6, and the graph is connected,
there is not enough information to determine if it is planar.
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Children, Goats, and Rabbits

I Page 53, #16: Suppose there are three farms each with a child
(C), a goat (G), and a rabbit (R).

1. The male child on the farm with goat Ga and the male child on
the farm with rabbit Rc are competing for the attention of the
female child Cb on the third farm.

2. Goat GC and rabbit Rb are not on the same farm

3. The boy on the farm with rabbit Ra is not Ca
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