Mat 3770
Week 3

Spring 2014

Week 3 — Student Responsibilities

» Reading: Edge Counting, Planarity

» Homework from Tucker & Rosen

» Attendance Cheekily Encouraged

Chapter 1 Supplement:
Representing Graphs with Data Structures

» When working with graphs in a program, we're usually not so
much interested in doing some sort of arithmetic operation as
we are mainly searching — for neighboring nodes, for nodes
with the least or maximum degree, etc.

> Given a graph G=(V, E), we can represent G in a computer
program either with an adjacency matrix or adjacency lists.

» Either an adjacency matrix or adjacency list can store edge
weights rather than 0/1 (indicating edge existence); they can
also be used to store directed edges.

Adjacency Matrix
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» Notice that in an adjacency matrix, in order to find a neighbor,
say of F, we have to do essentially a linear search. This is true
even if we only want to know if F has any neighbors.

Linked Lists

» An adjacency list can be stored in an array (vector) or as
linked lists.

> Note that in C++ it is possible to “shrink” and “grow”
array/vector size, thus avoiding wasted space. However, there is
a trade off in time.

Induction Proofs

The DREADED Mathematical Induction Proof!
(And you thought you'd never see it again!)
BWAAAAAHAHAHAHAHAHA!!

» Let P(1), P(2), ..., P(n), P(n+1), ..., be an infinite sequence
of statements. And suppose we know:

1. P(1) is true, and

2. for some arbitrary n > 1,
if P(n) is true, then P(n+1) is true

Then, for every n > 1, P(n) is true.




Induction Proofs — Steps

> There are three steps to an Induction Proof:

1. Base Case (BC): establish the truth for P(1) (or P(i) for some
small or initial i); pick an easy case if possible.

2. Induction Hypothesis (IH): Assume the theorem is true for
some arbitrary case, say P(n).

(Note: in strong induction, assume all cases up to an arbitrary
case are true.)

3. Inductive Step (IS): Show (or verify) that using the IH, we
can prove P(n+1) is true.

Prove

Use induction to prove: > 7 ;i = w Yn>1
BC:

IH:

IS:

Another Proof

Use induction to prove: Y7 ;(2i—1) = n*> ¥n>1
BC:

IH:

IS:

Yet Another Proof

Use induction to prove: 7|(11" —4") VY n>0
BC:

IH:

IS:

General Position

> A set of lines is in General Position if no two are parallel and
no three pass through the same point.

General Not General Not General

Number of Regions

Given n lines in general position in the plane, into how many

regions is the plane divided?
# lines || # regions
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» Do all sets of 4 lines (in general position in the plane) yield the
same number of regions? Why?

» Question: How many new regions seem to get added by the it
line? Why7 i of them

> Let R(n) be the number of regions formed by n lines in general
position in the plane.

» Claim: R(n+1) = R(n) + (n+1)
> Observation: line n+1 passes through n+ 1 regions of the plane

divided by n lines. Thus, each of these regions is cut in two, for
a net gain of n+ 1 regions.

» Where was the definition of general position used in that
observation? In the phrase, “passes through n+ 1 regions”

» So:
R(n) = n+ R(n-1)
= n+ (n—1) + R(n—2)
= n+(n-1) + (n—=2) + R(n=3)
n+(n-1)+ ...+ 2+ 1+ R(0)

» Prove using induction:
n lines in general position divide the plane into w +1or

@ + 1 regions

Proof

We wish to prove that n lines in general position divide the plane

. 2 .
into 5 41 regions

» BC: Let n = 0.
Ihs: Zero lines = a single region, the plane

rhs T 41 = @041 = 1
and1l =1/
> IH: Assume R(n) = % + 1 for some arbitrary n > 0

Proof

> IS: Show R(n+1) = %+1

R(n+1) = R(n) + (n+1) by definition
- n22+n +1 + n+1 by IH, subst
_ n2;—n + w +1 by alg. man.
- %Jrl by alg. man.
- M +1 by alg. man.
— M +1 by alg. man.

Thus, R(n) = &0 41 ¥V n>0

Euler's Formula

> Let G = (V, E) be a connected planar graph,
where v = |V| and e = |E|.

Euler’s Formula: v—e+r=2 or r=e—v+2

q v = 15

5 —(Infinite face)

» General Formula (if G is not necessarily connected):
v—e+r=1+c

where ¢ is the number of connected components

» We shall prove r = e — v + 2 by induction on the number of
regions

» Theorem. If G = (V, E) is a connected planar graph,
where v = |V|, e = |E|, and r is the number of regions formed
by G, then

r=e—v+2




Base Case

» Let r = 1. Then we note:
1. Graph must be a tree (i.e., no cycles)
2. Weneedl=e—v+2 ore=v—-1

> We need to show that if G is a tree, then e = v — 1 (by
induction on v)

If Gis atree, thene=v —1

BC Letv=1
One vertex — no edges, e = 0
Thus, clearly true (0 =1 —1=0)

IH Assume a tree of n vertices has n — 1 edges for some arbitrary n > 1.

IS Show a tree G, 1 with n+ 1 vertices has n edges

> Find a vertex of degree 1 (it must be a leaf), and remove it and
its edge, forming tree G,

» By the IH, e, = v, — 1, so G,;1 has 1 more vertex than edges
(i.e., Vat1 — 1= en+1)

> Hence, vp41 — 1 = e,41 since we add 1 vertex and 1 edge to G,
to construct Gpi1

Thus, if Gis a tree, thene=v —1

End of Subproof

Back to Euler
IH Assume Euler's formula holds for graphs with n faces, for some
arbitrary n > 1, ie., that n=e—v 42

IS Show the formula holds for any connected planar graph G with
n+1 faces, v vertices, and e edges (i.e., n+1=e—v+2, or
n=e—v+1)

» Pick a region of G and let a be an edge on that face.

» Then G — a has (n+1)—1 = n regions; e — 1 edges, and v
vertices
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Conclusion

» By the IH:
n = (e—-1)—-v+2
= e—v+1

» Thus, r=e—v+2 Vr>1

Chapter 2: Covering Circuits and Graph Coloring

2.1 Euler Cycles
Cycle: a sequence of consecutively linked edges:
((x1,%2)y (x2,%3)s « v (Xn—1,Xn))
whose starting vertex is the ending vertex
(a = xa)
and in which no edge can appear more than once.

A vertex may be visited multiple times, however.
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Finding Cycles




Konigsberg Bridge Problem

The old Prussian city of Konigsberg, located on the banks of the
Pregel River, included two islands which were joined to the banks
and to each other by seven bridges:

Eventually, someone tried to determine a walk which began at
their front door, crossed each bridge exactly once, and allowed
them to return to their front door. ..
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They weren't able to do this, so took the problem to the famous
b and fabulously well respected mathematician, Leonhard “Lenny”
Euler!
Because sex and television hadn't been invented yet, the He was able to solve the problem, and thus spawned
townspeople strolled about the town and across the bridges, and Graph Theory
had entirely too much time to think. ..
25 26
Multigraphs Euler Cycles

Multigraph: a graph which allows multiple edges between the
same vertices, as well as permitting self-loops.

©
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» Can we find a tour of the bridges which allows us to return
home without crossing any bridge more than one time? Why or
why not?

A

D

» Euler Cycle: a cycle that contains all the edges in a graph and
visits each vertex at least once.

An Investigation

Let G = (V, E) be a graph. Does G contain a path that begins
and ends at the same vertex and traverses each edge exactly once
(i.e., an Euler Cycle)?

B
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D D

Question: If an Euler Cycle exists, does it matter where we start?

Question: Do we need to produce an Euler cycle to know if one
exists?
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Observation 1

» If G has an Euler Cycle, then every vertex has even
degree... Why?

> Suppose degree(v) is odd and
> we begin at v

Can't end there, no way back

» we don’t begin at v
Must end there, contrary to the definition of
Euler Cycle
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An Algorithm to Find an Euler Cycle
Consider the following algorithm:

Step #1. Starting at an arbitrary vertex, say v, “walk” from edge
to edge, marking edges as you traverse them, until you can walk no
further.

note 1: only choose unmarked edges as you go
note 2: won't necessarily end at the start node
Observation 2: If your walk ended at u # v, then u has odd

degree (why?) so G doesn't have an Euler Circuit.
Therefore Stop:Fail.

Euler Algorithm, Step 2

Step #2. Call the path you made
P = v, v, v ..., Vo,

Observation 3: Exactly one of the following is true:

1. Some vertex v; along the path P has an unmarked edge
2. Every edge is in P (therefore Stop:Success)

3. G isn't connected (therefore Stop:Fail)
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Euler Algorithm, Steps 3—5

Step #3. If the first case holds, (v; on Path has unmarked edge),
then repeat Step #1 (walk a path) starting at vertex v;.

Observation #4: If your walk doesn't end at v; then v; has odd
degree. Therefore Stop:Fail.

Step #4. Augment the path P by adding the new path (insert it
in P atv)

Step #5. Repeat from Step #3.
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Results

Claim: If the algorithm succeeds, then G clearly has an Euler
Cycle.

Just as important: If the algorithm fails then G doesn’t have an
Euler Cycle (since G either has a vertex of odd degree or G isn't
connected).

Thus the algorithm will definitely find an Euler Cycle if one exists
and will produce proof that G doesn't have one otherwise.

The algorithm also shows:
Theorem. If G is connected and each vertex has even degree, then
G has an Euler Cycle. (Why?)




Algorithm Efficiency

Question: How efficient is this algorithm?

> Well, what does it do?
» walks along the graph
> glues little cycles together
> builds new little cycles

» Until success or failure.
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Adjacency Matrix

How efficient may depend on what data structure is used to store
the edges.

® pgc | |alB|cDEJF]
Affoli[1]1]o]1

A D B[1]/o/of[1]0]o0
clofofof1]1]r

F E D|1[1]1]o]1]o
Eflojo[1]1]0]0

Fllilo[1]o]o]o

Finding “next edge” in the path could take n = |V/| steps, and
this happens once for each edge; thus, |V/| * |E| steps are required.

Linked Lists
B c
A
D
F E
A | e{—>[Ble}—{Cle}—[Dls}—{FIe}
B |e—[Als}—>[D[*}~
C | et—>[Ale}—[Dle}—[Ele}—{F]¢]
D [e—[Als}—[Bl¢/—[Cls}>[El*—~
E [~ [Cl¢—[Dls—
F_[~—[Ale}—[Cls—
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Pseudo—Code

// S - Set of vertices with unmarked edges
// P - Euler Path we’re building

S=V
P ={}
fail = false

while vertex remains with unmarked edge in S
and haven’t failed
1.choose vertex with unmarked edge, u
2."walk" a path P’ to vertex v, marking edges
3.if u doesn’t equal v
then fail = true
else augment P with P’
endwhile

if not all edges marked, or G not connected,
then fail = true

if not fail, then Euler Cycle exists
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Theorem. An undirected multigraph has an Euler Cycle IFF it is
connected and all vertices have even degree.

The proof follows the same construction as we gave for the Euler
Cycle on a regular graph:
Take a walk, leaving breadcrumbs as we go.

If we do not return to where we started, yet all the edges we
may take are marked, there is no cycle.

Otherwise, if there is a vertex on our path with an unmarked
edge, repeat the walk with the same results.
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Associated Problems

In graphs that do not contain Euler Cycles, we must traverse some
edges more than one time (called Deadheading edges) to obtain
a tour. (Example in text: street cleaning)

» New Problem: minimize the number of deadheading edges
(i.e., find the minimum set of edges needed to make all vertices
of even degree and the graph connected.

> Another Problem: minimize the number of U-turns and turns
the street cleaner must make (takes time and wastes fuel). This
same concept is used in VLSI chip design — minimize layers
and vias.

42




Trails

Trail: a sequence of consecutively linked edges in which no edge
appears more than once.

Trail is to Path
as
Cycle is to Circuit

Both trails and cycles allow repeated vertices
Euler Trail: a trail which contains all the edges in a graph.

(Note: it will visit each vertex at least once assuming the graph is
connected.)
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A Corollary

Corollary (to Euler's Theorem): A multigraph has an Euler Trail,
but not an Euler Cycle, IFF it is connected and has exactly two
vertices of odd degree.

Proof

(=) Assume multigraph G has an Euler trail T but no Euler
cycle and show it has exactly two vertices of odd degree.

We note the starting and ending vertices of T, the Euler trail,
must have odd degree while all other vertices must have even
degree (by the same reasoning used to show all vertices in a
graph with an Euler Cycle must have even degree). Further, G
must be connected.
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(«) Assume multigraph G has exactly two vertices of odd
degree (say p and ¢), and show it has an Euler Trail but not an
Euler Cycle.

Let us add a supplementary edge < p, g > to G, obtaining the
graph H. H is connected and has all vertices of even degree.
Hence by the Euler Cycle theorem, H has an Euler Cycle.

Let us call this Cycle C. Now, remove the edge < p, ¢ > from
C. This reduces the Euler Cycle to an Euler Trail and includes
all edges of G.
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