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Week 4/5 — Student Responsibilities

I Exam 1 is Monday, 2/17

I Reading: Euler Circuits, Hamilton Circuits, Graph Coloring

I Hwk from Tucker: Section 2.1, 2.2

I Hwk from Rosen: Section 9.5

I Attendance Frostily Encouraged
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Section 2.2: Hamilton Circuits and Paths

I Hamilton Circuit: a tour of a graph in which every vertex is
visited exactly once. We begin and end at the same vertex.

I Hamilton Path: a tour of a graph in which ever vertex is visited
exactly once, but we do not begin and end at the same vertex.

I Hamilton Circuits and Paths are used in routing delivery trucks
and in robotic motion planning, say for a drill press that makes
holes at predetermined specific locations.

I Note: there is no simple way to determine if an arbitrary graph
has (or doesn’t have) a Hamiltonian Circuit (or HamPath).
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Proving Non–existence

To prove non–existence, begin building parts of a Hamilton Circuit
and show systematically the construction must fail.

Idea: any Hamilton Circuit must contain exactly two edges
incident to each vertex.

Three Rules for building a Hamilton Circuit

1. If a vertex v has degree 2, both of the edges incident to v must
be part of any Hamiltonian Circuit.

2. No proper subcircuit (that is, a circuit not containing all
vertices) can be formed while constructing a HC.

3. Once the HC is required or forced to use two edges at a vertex
v , all other (unused) edges incident to v can be discarded.
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Building Hamiltonian Circuits

A
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E
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D

A

Find a Hamiltonian Circuit if one exists
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Theoretical Results

Theorem. A connected graph with n > 2 vertices has a
Hamilton Circuit if the degree of each vertex is at least n

2 .

Theorem. Let G be a connected graph with n vertices,
v1, v2, . . . , vn 3 deg(vi ) ≤ deg(vi+1) ∀ 1 ≤ i < n.

If for each k ≤ n
2 , either

deg(vk) > k or deg(vn−k) ≥ n − k ,

then G has a Hamilton Circuit.
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Examples

A

B C D

E

B C

E

D

A

n = 5
k = 1 2 3 4 |5 1 2 3 4 |5
vk = A B D E |C B C D A |E
deg: 3 3 3 3 |4 2 2 2 3 |3
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Planar Graphs & HCs

Theorem. Suppose a planar graph G has a Hamilton Circuit H.
Let G be drawn with any planar depiction, and

I let ri denote the number of regions inside H bounded by i edges
in this depiction

I let r ′i be the number of regions outside H bounded by i edges

I then ri and r ′i satisfy the equation:

∑
i (i − 2)(ri − r ′i ) = 0

This theorem can be used to show some planar graphs cannot
have a Ham Circuit.
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6 6

3

3

r3 + r ′3 = 2

r6 + r ′6 = 3

(3− 2)(r3 − r ′3) + (6− 2)(r6 − r ′6) = 0

|r3 − r ′3| ≤ 2

I We cannot have r3 − r ′3 = 0 since the equation would then
require r6 − r ′6 = 0, ⇒⇐ since r6 + r ′6 = 3.

I Hence, (r6 − r ′6) ∈ {±1,±3} and so |4(r6 − r ′6)| ≥ 4

I Now it is impossible to satisfy the equation since
r3 = 2, r ′3 = 0, or vice versa, and |r3 − r ′3| = 2

Thus, it is impossible for the equation to be valid for this graph,
and so no Hamilton Circuit can exist.
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Does this graph have a Hamilton Circuit?
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Does this graph have a Hamilton Circuit?
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Tournaments

Tournament: a directed graph obtained from a complete
(undirected) graph, Kn, n ≥ 2, by giving each edge a direction.

Theorem. Every tournament has a directed Hamiltonian Path.

Proof by induction on the number of vertices, n

BC. Let n = 2. Then we have two vertices with one edge
between them. This edge may be directed toward either of the
vertices and trivially we have a directed Hamiltonian Path over
K2.

IH. Assume for some arbitrary n ≥ 2 that any tournament over
Kn−1 has a directed Hamiltonian Path.
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IS. Show any tournament T over Kn has a directed Hamiltonian
Path.

Remove an arbitrary vertex x from Kn, leaving a tournament T ′

over Kn−1 (with n − 1 vertices; here we are using the definition of
Kn).

v
1

v
5
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By IH, T ′ has a directed HP, say H = (v1, . . . , vn−1)

1. If the edge between x and v1 is < x , v1 >, then x may be
placed at the front of H to obtain a HamPath of T

2. If the edge between x and vn−1 is < vn−1, x >, then x may be
added to the end of H to obtain a HamPath of T

3. Otherwise, we have edges < v1, x > and < x , vn−1 >. Then,
for some consecutive pair on H, say vi−1 and vi , the edge
direction must change (i.e., one goes from path to x , the other
from x to path) and thus we can insert x between vi−1 and vi in
H and obtain a HamPath of T .
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Gray Codes

A scheme to encode information using binary digits

Gray codes are used in transmitting data through space or over the
Internet, or for storing information, such as with digital
technologies like Compact Disks (CDs) and Digital Video Disks
(DVDs).

A satellite transmits images back to Earth. To simplify, let’s
assume they are black and white with 6 shades of gray, so we need
8 darkness values (1 – 8).

The solution is pretty straight forward—we use 3 bits to encode
these values:

1 – 001 2 – 010 3 – 011 4 – 100

5 – 101 6 – 110 7 – 111 8 – 000∗
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Small Errors = Big Changes

1 – 001 2 – 010 3 – 011 4 – 100

5 – 101 6 – 110 7 – 111 8 – 000∗

Notice that if there is an error in sending ’3’ and a bit gets flipped,
we may end up with 111 or 7—a large difference from 3.

Gray Codes attempt to minimize the effects of errors – so if one
bit gets changed, the result isn’t very much different from the true
value.

Thus, the scheme is to encode two consecutive decimal numbers
by binary sequences that are almost the same – differing in just
one position.
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A New Encoding

I If we use 3 bits, then 011 differs by one bit from 001 and 010.

I These can be used for any three number sequence, such as 4

(001), 5 (011), and 6 (010), even though these binary numbers
themselves are not sequential!

I It is the mapping which is important.

I Using a Gray Code doesn’t eliminate all errors, but it does cut
down on them.

I But what does this have to do with Graph Theory?
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Gray Codes & Hamilton Circuits

We can model the problem of finding a Gray Code (say for the 8
darkness numbers) using a graph and finding a Hamiltonian Circuit.

Each vertex corresponds to a 3–digit binary sequence, and 2
vertices are adjacent if their binary sequences differ by just one bit.
This graph turns out to be a cube:

100000

001

011

101

010
110

111

18



A Hamilton Circuit/Path Mapping

001

011
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010
110

111

3
4

5 6

7

000 100
21

8

The order of vertices in a Hamilton Path produces a Gray Code
since consecutive vertices, representing consecutive decimal
numbers, differ in just one position.
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Longer Binary Sequences

I For any n > 0, similar graphs can be drawn for the 2n n–digit
binary sequences, using an n–dimensional cube or Hypercube.

I An n–dimensional cube has 2n vertices, each of degree n.

I Hypercubes have the property that the longest Hamilton Path
between any 2 vertices has length n − 1.

I These hypercubes are used in massively parallel computers with
2n processors
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Sec 2.3. Graph Coloring

Recall the four–color map problem from 1.4.

In general, a coloring of a graph G assigns colors to the vertices of
G so adjacent vertices are given different colors.

Note: vertices with a common color will be mutually non–adjacent.
In other words, no same–colored pair of vertices is joined by an
edge.
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Example Graph

B

C

F

A

E

D
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Example Graph Coloring

B−2

F−1

D−4
C−3

A−1

E−3

We cannot color with three colors since some adjacent pair in the
A–B–C–D subgraph would have the same color.
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Note 1. The complete subgraph A–B–C–D requires at least 4
colors.

Rule: a complete subgraph on k vertices requires k colors.

Note 2. When building a k–coloring, we can ignore all vertices of
degree less than k since when other vertices are colored, there will
always be at least one color available to properly color each such
vertex.
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Another Graph to Color

A

C
F

G
B

E

D
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Example Coloring

A1

B2

C 3

D 4

E 3

F2

G1

3
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Chromatic Number of a Graph

The chromatic number of a graph is the minimal number of
colors required to color the graph.

To verify a chromatic number, k , of a graph, we must show:

1. The graph can be colored with k colors.

2. the graph cannot be colored with k − 1 colors (similar to proving
a graph has no Hamilton Circuit, or cannot be isomorphic to
another particular graph).

The goal in attempting to prove a chromatic number k is to show
any (k − 1)–coloring forces at least two adjacent vertices to have
the same color.

In any coloring, vertices with the same color will be mutually
non–adjacent. In other words, they will form an independent set.
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Wheel Graphs

Wheel graphs are formed from a central vertex with spokes
(edges) out to the other vertices, and connections between
neighboring outer vertices.

The largest subgraph in a wheel graph is a triangle:

B

C

A

D

E
F

Using colors 1(green), 2(magenta),
3(cyan), 4(yellow), . . . , pick a triangle
and assign the first three colors, say
to triangle A–B–F. This forces C to
be 1(green), D to be 2(magenta),
requiring 4(yellow) for E.

This wheel cannot be 3–colored.
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Wheel Coloring Exercise

AF

G
E B

D C

A

CB

D E F

G H

I

Choose a triangle and find a coloring for each wheel
How many colors are necessary?
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Example Wheel Colorings

A

B

CD

E

F

G

B C

D
E

F

G H

I

A

Why are these wheels 3–colorable, while the one on the earlier slide
required 4 colors?
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Coloring Wheels

In general, wheels with an even number of spokes are 3–colorable,
whereas wheels with an odd number of spokes require 4 colors.

Best bet to find a k–coloring:

1. start by k–coloring a complete subgraph of k vertices, then

2. find uncolored vertices adjacent to k − 1 different colored
vertices, which forces their color choice.
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Generic Coloring Examples—I

A

B

C

D

E

F

G

H

Start with the largest complete subgraph. . .
What is fewest number of colors needed?
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Example Coloring—I

A

B

C

D

E

F

H

G
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Generic Coloring Examples—II

A

C

B
D

E

F

G

H

Add one more edge to the previous graph. . .
What is fewest number of colors needed?
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Example Coloring—II

A

B

C

D

E

F

G

H
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Generic Coloring Examples—III

A

B

C

D

E

G

H

I

JF

Start with the largest complete subgraph. . .
What is fewest number of colors needed?
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Example Coloring—III

A

B

C

D

E F

G

H

I

J
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Generic Coloring Examples—IV

A

B

C

D

E F

G

H

I

J

Add one more edge to the previous graph. . .
What is fewest number of colors needed?
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Example Coloring—IV

A

B

C

D

E F

G

H

I

J
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Graph Coloring Applications—Scheduling
Assume we wish to schedule 1–hour meetings for committees
which share some members, and we want to minimize the number
of meeting hours.

If no committees shared any
members, all could meet at
the same time.

If no committees shares
members with more than 1
other committee, 2 hours
would suffice.

A B

Here we would need 3
hours since members may be
shared between at most 3
committees.

C

BA
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Graph Coloring and Scheduling

Vertices represent committees (or sports teams, organizations,
classes, etc.)

Edges represent “share one or more members”

Colors represent disjoint meeting times

This maps the scheduling problem to the graph coloring problem.
This is an important concept in theoretical and applied computer
science.

If we minimize the colors, we minimize the meeting times. . .
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