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Week 5 — Student Responsibilities

I Reading: Edge Counting, Planarity
(See Syllabus schedule)

I Hwk from Tucker – 2.4

I Hwk from Rosen – 9.8

I Attendance Sprightfully Encouraged
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What is the Chromatic Number of this Graph?
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An Example Coloring
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Graph Coloring Applications—VLSI Chip Design

VLSI: Very Large Scale Integrated Chip Design—the “brains” of a
computer

Gates: logical sub-circuits in a computer chip which are composed
of electronic switches

Possibilities in chip manufacturing:

I Most expensive: Custom fabricated chips

I Medium expense: Semi–custom chips

I Least expensive: “Off–the–Shelf” chips
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Semi–Custom Design

Using Pre–fabricated Chips

I fabricated up to the inter-connection phase

I reduces overall cost of manufacturing chips

I example: Programmable Logic Arrays (PLA)

I gates are laid out in rows (G1,G2, . . . ,Gn) with specified
connections between certain pairs, Gi and Gj , given as (< i , j >)

I connections are laid out in parallel tracks (columns)

I no connections may overlap, not even at an endpoint

I we want to minimize the number of tracks required
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A Programmable Logic Array Example

Suppose we want the following Gate connections

< 1, 3 > < 1, 3 > < 2, 3 >
< 2, 4 > < 2, 5 > < 4, 5 >

The layout below “realizes” these connections using 5 tracks

G1

G2

G3

G4

G5

21 3 4 5
track
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Minimizing the Layout

If we have the time and money, we can re-arrange rows and
improve the routing phase. Notice that gates in rows 1 & 3 want
to be together, as do gates in rows 2 & 3, and in 4 & 5

We get very good improve-
ment: from 5 tracks down to
just 3.

G1

G4

G5

G3

G2

21 3
track

How is this modeled in a program? With a graph. We can use a
force–directed algorithm, which acts like springs attached to the
rows so those with many connections are more attracted than
those with fewer.
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Interval Graph

I Interval Graph: a graph G with a one–to–one correspondence
between its vertices and a collection of intervals on the line such
that two vertices of G are adjacent when the corresponding
intervals overlap.

I Example applications: competition graph (used in ecology;
species compete for survival), VLSI routing problems (PLA
folding).
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I Given the VLSI design problem of connecting the rows of gates:

(1, 3) (1, 3) (2, 3)

(2, 4) (2, 5) (4, 5)

we can model the problem of determining the minimum number
of tracks by finding the Chromatic Number of a related
interval graph.

10

I Let vertices be the connection pairs, and consider them as
intervals, for example: (1, 3) → [1..3]

I Let edges join intervals without overlap.

I The minimum number of tracks will be the Chromatic Number
of the graph since intervals can share a track only if they do not
overlap.
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Consider: K5 Subgraph

I A complete graph, K5, requires 5 colors (and we cannot color it
in fewer colors).

I Thus, we need at least 5 tracks.

(2, 4)(2, 5)

(2, 3)

(1, 3)

(1, 3)

(4, 5)
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Another Example

I The largest complete graph in the figure below is a triangle,
therefore it requires 3 colors (and we cannot color it in 2 colors)

I Thus we need only 3 tracks when the rows are rearranged.

(D, E)

(C, D) (C, E)

(A, B) (B, C)

(A, B)
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Sec. 2.4—Coloring Theorems

I Polygon: a planar graph consisting of a single circuit with edges
drawn as straight lines.

I Triangulation of a Polygon: the process of adding a set of
straight–line chords between pairs of vertices of the polygon so
that all interior regions are bounded by a triangle.

I Note: Chords cannot cross each other nor the sides of the
polygon.
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Example of a Triangulated Polygon
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Triangulation Theorem

Theorem 1. The vertices in a triangulation of a polygon can be
3–colored.

Proof is by induction on n, the number of edges in the polygon.

BC. Let n = 3.

Then the polygon is a triangle, and clearly can be 3–colored.

IH. (Strong induction) Assume any triangulated polygon with
4 ≤ k < n boundary edges can be 3–colored for some arbitrary
n ≥ 4.
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IS. Show a triangulated polygon, T , with n boundary
edges can be 3–colored.

I Pick some chord edge e = < vi , vj >, which must exist since
T has been triangulated.

I Since all chord edges connect vertices of the polygon, the chord
edge e splits T into two smaller triangulated polygons, each of
which can be 3–colored by the IH.

I In each coloring, vi will have some color, and vj will have some
other color.

I Then the two subgraphs can be combined to yield a 3–coloring
of the original polygon since, if need be, the coloring of one of
the smaller polygons can be modified. Note: this 3–coloring is
unique.
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Application of the Theorem

I Art Gallery Problem: What are the fewest number of guards
needed to watch paintings along the n walls of an art gallery?

I Guards must have direct line–of–sight to every point on the walls.

I A guard at a corner is assumed to be able to see the two walls
that end at that corner, and the wall directly opposite the
corner, if there is one.
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Fisk’s Corollary

Corollary: the Art Gallery Problem with n walls requires at
most bn3c guards (where b c is the floor function.)

Proof: Let the n walls form a polygon P with triangulation T .
3–color T and note each triangle will have a corner of each
color. Pick one color, c , and place a guard at each corner
colored c (1 in each triangle). Hence the sides (and thus all
walls) of every triangle will be watched.

A polygon with n walls has n corners. If there are n corners and
3 colors, some color is used on bn3c or fewer corners.
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Other Coloring Theorems

Notes:

I If a graph is bipartite, it is 2–colorable (and vice–versa)

I A graph is 2–colorable IFF all circuits have even length (this
doesn’t require the graph to be connected)

I Let χ(G ) denote the chromatic number of G .

Theorem 2. If the graph G is not an odd circuit or a complete
graph, then χ(G ) ≤ d where d is the maximum degree of a vertex
in G . (This gives a usually poor upper bound on χ(G ))
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Theorem 3. For any positive integer k , there exists a
triangle–free graph G with χ(G ) = k

Rather than color vertices, we can color edges so that all edges
incident to the same vertex must have different colors.

Theorem 4 (Vizing’s Theorem). If the maximum degree of a
vertex in a graph G is d , then the edge chromatic number of
G is either d or d + 1.
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Theorem 5. Every planar graph can be 5–colored

Note: in Tucker, Section 1.4, exercise 16, the reader was asked to
prove: Any connected planar graph has a vertex of degree at
most 5.

Theorem 5 Proof — by induction on the number of vertices.

BC. Let 1 ≤ n ≤ 5.
Trivially, any such n vertex graph can be 5–colored.

IH. Assume for some arbitrary n ≥ 1, that connected planar
graphs with n − 1 vertices can be 5–colored.

IS. Show a graph with n vertices can be 5–colored.
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By the note, G must have a vertex, x , of degree at most 5. Delete
x from G to obtain a graph, G ′, with n− 1 vertices. By the IH, G ′

is 5–colorable.

Now, reconnect x to the graph and try to properly color x .

If x has degree ≤ 4, then simply assign a color to x which is
different from any of its neighbors. The same coloring works if the
degree of x is 5 and 2 or more of its neighbors has the same color.

There remains the case of how to color x if all 5 neighbors have
different colors.
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I Let us label the adjacent vertices A, B, C , D, and E , imposing a
clock–wise ordering around X in a planar depiction of G .

I Let the colors 1—5 be assigned to vertices A—E in order.

I Consider vertex A, colored 1, and vertex C , colored 3.

A − 1

E − 5 B − 2

D − 4 C − 3

X
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Case 1.

If there is no path between them (other than through A), A may
be recolored with color 3, all vertices adjacent to A which are 3
can be assigned 1, and so on.

This re-coloring will not affect C since there is no path from A to
C , and furthermore, will only affect vertices reachable from A
which are colored 1 or 3.

After the re-coloring, X may be colored 1.
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Case 2.

There exists a path from A to C . This path either encompasses
B, or it encompasses D, but not both, since G is planar.

Thus there can be no path between B and D (other than through
A), so the same type of re-coloring may be applied to B (color 2),
using D’s color (4).

Thus allowing X to be colored with 2.

Hence, every planar graph can be 5–colored.
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Tucker, Chapter 2 Overview

I Section 2.1 Euler cycles — cycles that traverse every edge
exactly once. Determine existence with Euler’s Theorem.

I Section 2.2 Hamilton circuits — circuits that visit every
vertex exactly once. Determine existence by a laborious
systematic search to try all possible ways of constructing a
HC.

I Section 2.3 Graph coloring & some applications.

I Section 2.4 Graph coloring theory.
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