
Mat 3770
Week 8

Spring 2014

1

Week 8 — Student Responsibilities

I Reading: Chapter 3.2 (Tucker), 10.3 (Rosen)

I Homework

I Attendance re-FRESH-ingly Encouraged

2

Section 3.2 Depth–First and Breadth–First Search

I Tree-based searches abound in applications, and are amenable
to computerized solutions.

I Depending upon the application, we may wish to find

1. one solution
2. all solutions, or
3. an optimal solution

I To organize the enumeration of possible solutions:

1. let the sequential choices be internal nodes in a rooted tree
2. the solutions and “dead ends” be the leaves

I The big challenge is to be sure to check that all possible ways to
generate a solution are investigated: that the enumeration of
possibilities is complete.

3

Two Basic approaches to Tree Enumeration

Graph traversal algorithms differ by the order in which nodes are
”visited.”

The two best known methods are:

1. Depth–First Search (or Backtracking)

2. Breadth–First Search

4

Example: DFS(G, f)

I numbers will indicate visitation order

I dotted lines will represent unmarked edges

I use alphabetic order to choose among next nodes to visit

a

b

c

d f i

g

h

5

DFS Algorithm

Given: An undirected graph G = (V , E), and a vertex v ∈ V
Goal: Visit all vertices and edges of G starting with v .

Procedure DFS (G, v)

// PRE: G is connected

// POST: every vertex and edge of G

// is visited

begin

Mark (v)

Visit (v) // do application processing

for all unmarked edges <v, w> do

if w is unmarked then

MarkEdge (v, w)

DFS (G, w)

VisitEdge (v, w) // process if necessary

end

6

Lemma

I If G is connected, procedure DFS visits every vertex and every
edge.

I Edges are visited or checked at most twice,

I DFS is called once for each vertex, and

I the marked edges form a tree (called the DFS tree).

7

Proof:

I Recall:
∑

deg(v) = 2|E |, i.e., the sum of the degrees of all
nodes is twice the number of edges.

I For any v , DFS(G , v) is called exactly once — when v is
unmarked.

I So, if < v , w > is an edge, it’s visited and marked at that time
by DFS(G , v) or DFS(G , w), whichever node is visited first.

I Note also, this means the FOR loop is executed a total of 2|E |
times over all calls of DFS.

I As for marked edges: Claim: DFS(G , v) marks edges which
form a tree with root v . [Proof by induction on the number of

unmarked vertices in G .]

8

Lemma

If T is the tree formed by DFS (G , v), then for each edge e ∈ EG ,
either:

I e ∈ T , or

I e connects a vertex in T to an ancestor or descendant in T .

I.e., there are no cross–edges in T .

Proof.

Let e = < u, W >. if u is marked first, then w is marked during
DFS (G , u).

So, by the previous lemma (vertices are visited only once), w is a
descendant of u.

9

Complexity of DFS

I Assume visit(v) takes O(1) time

I How long to find next neighbor of v?

I depends on implementation of G

I let’s assume O(1) time

I Then clearly each edge is visited at most twice and each vertex
once, so time complexity is:

O(|V |+ 2|E |) = O(|V |+ |E |)

10

DFS Drawback

I Suppose we don’t want to visit all the vertices — we merely
want to find one with a certain property: i.e., we want to be able
to stop.

I Idea: non–recursive version of DFS using a stack.

I We’ll assume we’re not interesting in visiting every edge.

11

Non–recursive DFS Algorithm

Procedure DFS2 (G, v)

// PRE: G is connected or we only visit

// subgraph in which v is found

// POST: every vertex of G is visited

begin

CreateStack(S)

Mark(v)

Push(S, v)

while not Empty(S)

x = Pop(S)

while x has unvisited neighbor (w)

Mark(w)

Push(S, w)

end

12

Application: Counting Connected Components

Procedure Components (G, cnt)

// PRE: no vertex in G is marked

// POST: cnt is number of components in G

begin

cnt = 0

while there’s an unmarked vertex v

DFS(G, v)

cnt = cnt + 1

end

13

DFS in DiGraphs

Works the same as for undirected graphs, but there are differences
with respect to the DFS tree — it may not be a tree, but a forest.

There are four possible types of edges in the DFS forest:

I the tree edges: of the DFS tree

I back edges: edges to ancestors in the tree

I forward edges: edges to descendants in the tree

I cross edges: all others

14

DiGraph Example: DFS(G, f)

a

b

c

d f i

g

h

15

Lemma

If < u, w > is an edge of a directed graph G with DFS forest F
and DFSnumber(u) < DFSnumber(w), then w is a descendant of
u in the DFS tree.

Proof:

I Vertex u was considered (visited) before w , so we would
eventually process edge < u, w > if no other path to w from u
exists.

I Hence, cross–edges go from higher numbers to lower numbers.

16

Lemma

Suppose there is a directed path v1, v2, . . . , vn in G such that v1
has lowest DFSnumber in {v1, . . . , vn}. Then, ∀ 1 < i ≤ n, vi is a
descendant of v1.

Proof:

Note v1 and all descendants have DFSnumbers in the interval
[a..b], and DFSnumber(v1) = a.

Proof will be by induction on the number of nodes in the
path.

17

BC Let n = 2, and v1 → v2. By the last lemma, v2 is a descendant
of v1.

IH Assume for directed paths with n − 1 nodes where v1 has
lowest DFSnumber, that v2, . . . , vn−1 are descendants of v1.

IS Show lemma is true for paths with n nodes.

If vn is not a descendant of v1, and the DFSnumber(v1) >
DFSnumber(vn), then DFSnumber(vn) >DFSnumber(vn−1)
since vn−1 is closer to v1 in the path (and hence will be
processed before vn).

18

V1

Vn−1

Vn

?

Consider the edge vn−1 → vn. Is it:

I in the tree? — assumed no, since not a descendant of v1

I forward edge? — no, for same reason

I backward edge? — no, since DFSnumber(vn) >
DFSnumber(vn−1)

I cross edge? — no, since DFSnumber(vn−1) < DFSnumber(vn)

We reach a contradiction, and thus vn is a descendant of v1.

19

Application: Acyclic Digraphs

I Suppose a program consists of many procedures.

I Let us say procedure X depends on Procedure Y if there are
procedures X = X1, X2, . . . , Xn = Y such that Xi calls Xi+1

∀ i < n.

I Question: Does any procedure depend on itself?

I Why care?

I As programmers, this is a sort of recursion

I As compiler writers, we can allocate one big activation record for
all the procedures if none depend on themselves.

20

Directed Cycles and Backedges

I Consider procedures as vertices of a directed graph, and X → X′

if X calls X′

I We want to know: does G contain any directed cycles?

I Theorem. let G = (V, E) be a directed graph, and let T be a
DFS tree (forest) of G. Then G contains a directed cycle IFF T
contains a back edge.

21

Proof

I certainly if there’s a back edge from vi to vj , then there’s a
directed cycle.

I Suppose now there’s a cycle and let vi be the vertex on the cycle
having the smallest DFSnumber.

I Claim: Every vertex on the cycle is a descendant of vi — thus
the last edge to vi is a back edge.

22

I How do we check for a directed cycle?

Answer: Look for a back edge!

I Idea: As we traverse the graph — along the DFS forest, mark
every vertex on the path from the root to the current vertex.

Then, when examining edges from the current vertex, if the
other end of one is marked, there’s a back edge

When moving back up trees, unmark edges left behind — to
clean up

23

Topological Sorting

I A topological sort of G = (V, E), a directed acyclic graph
(dag), is a linear ordering of all its vertices such that if G
contains an edge < u, v >, then u appears before v in the
ordering.

I Obs: If G is not acyclic, then there is no linear ordering.

I Note: dag’s have many applications, e.g., in problems where
precedence among events must be indicated (such as in job
scheduling).

24

In what order must the following articles of clothing be put on?

underwear socks watch

toe−ringshoes

Tshirt

jeans

belt

jacket cap

over−shirt

Which have indegree of 0?

25

Topological Sort Algorithm

Procedure TopoSort (G)

// PRE: G is an acyclic directed graph

// POST: the vertices of G have been listed

// in topological order

begin

while vertices are left in V

find a vertex, v, with indegree 0

"output" v (i.e., add to the list)

remove v (V = V - {v}), and all of its

outgoing edges from the graph:

for all <v, w> in E, E = E - {<v,w>}

indegree(w)--

end

Question: What happens if G has cycles? Answer: The find will fail.

26

Find the Topological Sorting

f b

c x

y

m

w

p

z

t n

q

27

Lemma

If G is acyclic (G has a vertex v of indegree 0), then we can find a
linear ordering of G’s vertices.

Proof:

BC |V | = 1, the linear ordering is the single vertex.

IH If G has n vertices and is acyclic, we can find an ordering

28

IS Suppose G has n + 1 vertices and is acyclic.
Let v have indegree 0 (since acyclic, such a v exists), and let:

G ′ = (V − {v},E − {< v , u > |u ∈ V })
I.e., remove v and its edges from G

Now, G ′ has n vertices and must also be acyclic (since G was),
so we have an order v1, . . . , vn for G ′, and clearly v , v1, . . . , vn is
an ordering for G .

Thus all dag’s have a linear ordering.

29

Implementation

I Make an ordered container Indeg[1..n] to hold the indegrees of
the vertices

I Indeg[] can be initialized in O(|V |+ |E |) time by traversing G.

I We can assume G is stored in a container V[1..n] of edge lists.

I The while loop in the algorithm eventually removes every edge
(once and only once) so the total time for the loop is O(|E |).

30

I How long does it take to find v with indegree zero?

I Naive: O(|V |) time, yielding O(|V |2) time overall for all |V |
finds.

I Better: When Indeg[] is initialized, put vertices of indegree 0 in
a queue.

Whenever an edge < v , u > is removed, check to see if u has
indegree 0. If so, add it to the queue.

Now, finding the next v takes O(1) time.

I So, overall, we can order the vertices with this topological sort in
O(|V |+ |E |) to initialize Indeg[], and O(|E |) to process.

31

Breadth First Search

Idea: visit all vertices and/or edges of G beginning with vertex v,
then do the same for all neighbors, and their neighbors, and so on.

I The vertices of the BFS tree are visited in order of increasing
depth

I non–BFS tree edges (the dotted ones) connect vertices which
differ by at most 1 level.

32

Example: BFS(G, f)

a

b

c

d f i

g

h

33

BFS Algorithm

Given: An undirected graph G = (V , E), and a vertex v ∈ V
Goal: Visit all vertices and edges of G starting with v .

Procedure BFS(G, v)

begin

CreateQueue(Q)

Mark (v)

Enqueue(Q, v)

while not Empty(Q)

x = Dequeue(Q)

Visit(x)

for each neighbor w of x do

if w is unmarked then

Mark(w)

Enqueue(Q, w)

VisitEdge(x, w)

end

34

I Claim: If G is stored as an array of adjacency lists, then BFS
takes time O(|E |+ |V |)

I Observation: BFS can be used instead of DFS in many
situations.

Usually the application determines which to use.

E.g., Game trees (for chess, checkers, etc.) and possible moves.

35

BFS Application: Find the Center of a Graph

I Given a graph G, find a vertex v which minimizes the farthest
distance to every node.

I.e., find v such that maxw∈V (distance(v, w)) is minimized.

I Such a vertex is called a center of G.

Graphs may have one center, or many centers.

I Let us assume all edges have length 1.

I To find max distance:

mark all neighbors
for each neighbor

mark all unmarked neighbors, etc.

36

Examples: Finding Graph Centers

37

Complexity of Finding Graph Centers

I In BFS, how far can we go in one step? In 2 steps? Etc.

I For each v ∈ G , we can find the max distance to w in
O(|V |+ |E |) time

I Do this for each vertex and choose the minimum

I Thus, O(|V | ∗ (|V |+ |E |)), or O(|V |2 + |V | ∗ |E |) time

38

DiGraph: BFS(G, f)

a

b

c

d f i

g

h

39

Binary Tree Traversals

Let n be a node, L be the node’s left subtree, and R the right
subtree.

There are three systematic approaches to traversing a binary tree
— differing in when the node n is visited.

Pre–order nLR

In–order LnR

Post–order LRn

40

Traversal Exercise 1

A

B C

D E F G

H I J

PRE:

IN:

POST:

41

Traversal Exercise 2

D E

B

A

C

F

G H I

PRE:

IN:

POST:

42

