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Week 9 — Student Responsibilities

I Reading: Chapter 3.3–3.4 (Tucker), 10.4–10.5 (Rosen)

I Homework

Due date Tucker Rosen

3/21 3.2 10.3

3/21 DFS & BFS Worksheets

3/26 3.3 10.4, 10.5

3/28 Heapify worksheet

I Attendance Truly, Madly, Deeply Encouraged
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3.3 Spanning Trees

I A spanning tree of a graph G is a subgraph of G that is a tree
containing all vertices of G.

I A minimal spanning tree is a spanning tree whose sum of the
edge weights (lengths) is as small as possible.

I Problem Statement: Given a graph G = (V, E) with positive
edge weights (cost: E → <+), find the cheapest connected
spanning subgraph H of G.

I Note: If H = (V, EH), then cost(H) =
∑

e∈E(H) cost(e), i.e.,
cost of subgraph is sum of costs of edges in subgraph.
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Example: Minimal Spanning Tree
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Observations

I H must be a tree (if H exists). Why?

1. must span and be connected

2. if cycle, then extra edge with positive weight, which could be
removed to reduce cost

I If G has n vertices (|V | = n), then any minimal spanning tree of
G has N − 1 edges.

I A graph with no cycles is called a forest

I A connected forest is called a tree
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Prim’s Minimal Spanning Tree

Idea: “Grow” a Tree

1. Pick an arbitrary vertex in the graph, place in VH

2. From among the edges going from VH to vertices not in VH ,
choose a cheapest one, say edge e to vertex x

3. Add vertex x to VH and e to EH

4. Repeat process from step 2 until no more vertices remain to be
added to VH , which is equivalent to saying |EH | = |VG | − 1
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Prim’s Minimal Spanning Tree, Start at A
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Prim’s MST Algorithm

Procedure Prim (G): H

// PRE: G is connected

// POST: H is an MST of G

begin

pick an arbitrary vertex x in the vertices of G,

and add it to VH, the vertices in H

from among the edges incident to x, select the

cheapest and add it to EH, the edges in H

while |EH| < |VG| - 1

find the cheapest edge <a, b>

where a is in VH, and b is in VG - VH

add <a, b> to EH, add b to VH

end
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Kruskal’s MST

Idea: connect forests until one tree

1. Place the vertices of VG into |VG | = n individual subtrees

2. Find the minimum cost edge, e ∈ EG , which doesn’t cause a
cycle in the spanning forest

3. Add e to EH , joining two of the subtrees

4. repeat process from step 2 until a single spanning tree exists,
which is equivalent to saying |EH | = |VG | − 1
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Kruskal’s MST
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Edge weights: 2, 3, 4, 5, 5, 8, 10, 12, 14, 18, 26, and 30
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Kruskal’s MST Algorithm

Procedure Kruskal (G): H

// PRE: G is connected

// POST: H is an MST of G

begin

put n vertices into n singleton trees

H = { }

// repeat until tree has n-1 edges

while |EH| < |VG| - 1

a) find the min_cost_edge e in EG

b) if H remains a forest when e is added

add e to VH

c) delete e from EG

end
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Implementing Kruskal’s Algorithm

I We need to be able to (quickly) find the next cheapest edge

I Using a min-heap vs sorted list

I Heap is better since not every edge may be examined / removed

I But, what’s a heap?
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Priority Queues and Heaps

I A Priority Queue is a data structure supporting the
operations:

1. insert() and

2. removeMin() (or removeMax(), depending upon the problem)

I One way to implement priority queues is with a heap

I A heap is an essentially complete binary tree, i.e.:

1. all levels are full except possibly bottom level (leaves)

2. all bottom nodes are in left–most positions.
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Heap Implementation

Heaps can be efficiently implemented with arrays, which form an
implicit (vs explicit) representation of a tree. For example:

i = 1 2 3 4 5 6 7 8 9 10 11 12

L 20 10 15 8 7 14 3 5 6 4 2 1

Where Children of L[i] are in positions 2*i and (2*i)+1.

5 6 4 2 1

8 7 14 3

1510

20
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The Min–heap Property

An array L[k..n] has the Min–heap property if

∀ i 3 k ≤ i <
n

2
: L[i ] ≤ L[2i ] and L[i ] ≤ L[2i + 1]

if n is even, then L[n2 ] ≤ L[n]

In other words: Parents are smaller than their children, or child
in the case n is even.
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removeMin() (Max) Algorithm

I Send out the first value in heap as min (max)

I Put last value (x) of heap in position 1: L[1] = L[size]

I Decrement heap size

I Trickle–down x through heap by swapping it with the smaller
(larger) child until smaller (larger) child is larger (smaller) than x.
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Example — removeMax()
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Insert() Algorithm

I Increment heap size

I Put new value (x) in L[size]

I While x is smaller (bigger) than its parent, swap them (aka
percolate– or bubble–up)
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10 14

8 7 1 3

5 6 4 2 17
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Complexity of Heap Operations

I Observation: if a heap of height h has n nodes, then

2h ≤ n ≤ 2h+1

one leaf at level h versus a complete tree

I Take the log of each part of the inequality:

h ≤ log n ≤ h + 1

I Subtracting 1, we find:

log n − 1 ≤ h ≤ log n

I Hence, to traverse the heap from root to leaf, or in reverse, takes
O(log n) time.

I Thus, both Insert() and Delete() take O(log n) time.
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What if we merely kept an unordered list?

I Delete: find, delete item, and fill in
I array: O(n) + O(1) + O(1) = O(n)

I linked list: O(n) + O(1) = O(n)

I Insert: array / linked list: O(1)

An ordered list?

I Delete: find, delete item, and fill in
I array: O(1) + O(1) + O(n) = O(n)

I linked list: O(1) + O(1) = O(1)

I Insert: find position, insert (move)
I array: O(log n) + O(n) = O(n)

I linked list: O(n) + O(1) = O(n)
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An Aside: Heapsort

I An array, L, can be sorted as follows:

1. Turn L[1..n] into a heap (aka heapify)

2. Remove() n times, storing the removed (min or max) value at the
end of the heap, then decrement size of heap

I How fast is this sort?

I Step 2 takes time:

log (n) + log (n − 1) + · · ·+ log (1) =
∑

i=1..n

log i ∈ O(n log n)

I Step 1? It depends . . .
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Heapifying — Method 1: Top–down

for i = 2 to n

BubbleUp(L[1..i])

// invariant: L[1..i] is a heap

(Max)–Heapify: 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20
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Method 1 Complexity Analysis

I Complexity? All nodes at depth j take j swaps in worst case, so:

T (n) =
∑

j=0..h

j × number of nodes at depth j

I We have at most 2j nodes at depth j , so:

T (n) ≤
∑

j=0..h

(j × 2j) = (h − 1)2h+1 + 2

I We know h ≤ log n, so:

T (n) ≤ (log (n − 1))2log n+1 + 2

≤ log n(n) + 2

≤ n log n + 2

∈ O(n log n)
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Can We Create Heaps Any Faster?

I Method 1: Top–down moves many (about n
2 ) elements by

log n in the worst case (if already in order, all n
2 last inserts must

percolate to the top!)

I Consider Method 2: Bottom–up, where we assume the leaves
are in place and use sift–down on the top n

2 elements.

This moves fewer elements by the height of the tree.
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Heapifying — Method 2: Bottom–up
// PRE: L[n/2 + 1 .. n] already a heap

for i = n/2 downto 1

SiftDown(L[i..n])

// invariant: L[i..n] satisfies the

// heap property

(Max)–Heapify: 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20

25

Method 2 Complexity Analysis
I We have the recurrence relation:

T (n) ≤ 2T (bn
2
c) + log n

I We brilliantly guess that

T (n) = O(n − log n), so

T (n) ≤ cn − d log n

I Thus
T (n) ≤ 2T (

n

2
) + log n

≤ 2(c(
n

2
)− d log

n

2
) + log n

= cn − 2d log
n

2
+ log n

= cn − 2d(log n − log 2) + log n

= cn − 2d log n + 2d + log n

= cn − 2d log n + log n + 2d
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I And we would like:

cn − 2d log n + log n + 2d ≤ cn − d log n

I So we want:

−d log n + log n + 2d ≤ 0

(1− d) log n + 2d ≤ 0

2d ≤ −(1− d) log n

2d ≤ (d − 1) log n

2d

d − 1
≤ log n
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I Pick d = 1
2 , then

2d

d − 1
=

2(12)

(12 − 1)

=
2
2
−1
2

=
1

(−12 )

= −2
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I Oops, d − 1 must be positive . . . Pick d = 2, then

2(2)

(2− 1)
=

4

1
= 4, and

2d

(d − 1)
≤ log n, for n ≥ 24 = 16

I We would also need to show that T (n) ≤ cn− d log n, which is
no problem.

Homework: Max–heapify (both methods):
3, 21, 19, 8, 7, 13, 24, 16, 31, 22, 14, 1, 12, 81, 5
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Back to Implementing Kruskal’s Algorithm

I We needed to be able to find the next cheapest edge

I Use a min-heap of edges. (All |EG | of them.)

I Fastest heapify? O(n) for n keys, thus it takes O(|EG |) time to
make the heap

I In worst case, O(|EG |) edges may be removed.

I Let n = |VG | and p = |EG |
Then total heap processing / activity time is:
O(p + p log2 p) for the heapify + O(p ∗ delete min) deletes
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I Note: since p ≤
(n
2

)
= (n2−n)

2 , p ∈ O(n2), so:

log p ∈ O(log n2)

∈ O(2 log n)

∈ O(log n)

Thus, p log p ∈ O(p log n) or O(n2 log n).
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Finishing Up Kruskal’s Algorithm

I What else needs to be done? We need to be able to tell whether
adding an edge to the subgraph H forms a forest or results in a
cycle.

I If not cycle is formed, then we need to be able to merge the two
trees that the edge connects.

I That is, H represents a set of trees. Given an edge
e = < u, v >, we need to know if vertices u and v are in the
same tree. If not (no cycle), merge the trees in which they’re
found.
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The Union–Find Data Structure

I What we need is a data structure which will hold a collection of
disjoint sets (vertices in trees), and allow efficient
implementation of:

1. Union(i, j): merge sets i and j

2. Find(x): determine which set contains x

I Such a data structure is called a Union–Find or Disjoint–Set
data structure.
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