Mat 3770

Spring 2014

Week 9 — Student Responsibilities

> Reading: Chapter 3.3-3.4 (Tucker), 10.4-10.5 (Rosen)

» Homework

‘ Due date ‘ Tucker ‘ Rosen ‘
3/21 3.2 10.3
3/21 DFS & BFS | Worksheets
3/26 |33 10.4, 10.5
3/28 Heapify worksheet

» Attendance Truly, Madly, Deeply Encouraged

3.3 Spanning Trees

> A spanning tree of a graph G is a subgraph of G that is a tree
containing all vertices of G.

> A minimal spanning tree is a spanning tree whose sum of the
edge weights (lengths) is as small as possible.

» Problem Statement: Given a graph G = (V, E) with positive
edge weights (cost: E — R™), find the cheapest connected
spanning subgraph H of G.

> Note: If H = (V, Ep), then cost(H) = 3- gy cost(e), i.e.,
cost of subgraph is sum of costs of edges in subgraph.

Example: Minimal Spanning Tree

B 3.---

- ’ AN
,.\‘\ 4/, \ N
s ‘\\3 ’ \ \

Observations

» H must be a tree (if H exists). Why?

1. must span and be connected

2. if cycle, then extra edge with positive weight, which could be
removed to reduce cost

v

If G has n vertices (|V| = n), then any minimal spanning tree of
G has N — 1 edges.

> A graph with no cycles is called a forest

» A connected forest is called a tree

Prim’s Minimal Spanning Tree
Idea: “Grow" a Tree

1. Pick an arbitrary vertex in the graph, place in Vy

2. From among the edges going from V}y to vertices not in Vy,
choose a cheapest one, say edge e to vertex x

3. Add vertex x to Vi and e to Ey

4. Repeat process from step 2 until no more vertices remain to be
added to Vj, which is equivalent to saying |Ex| = |Vg| — 1

Prim’'s Minimal Spanning Tree, Start at A

A
L]

B C
[°
D
[]

E® oF
[]

G

Prim’s MST Algorithm

Procedure Prim (G): H
// PRE: G is connected
// POST: H is an MST of G

begin
pick an arbitrary vertex x in the vertices of G,
and add it to VH, the vertices in H
from among the edges incident to x, select the
cheapest and add it to EH, the edges in H
while |EH| < |VG| - 1
find the cheapest edge <a, b>
where a is in VH, and b is in VG - VH
add <a, b> to EH, add b to VH
end

Kruskal's MST

Idea: connect forests until one tree

1. Place the vertices of Vg into |Vi| = n individual subtrees

2. Find the minimum cost edge, e € Eg, which doesn't cause a
cycle in the spanning forest

3. Add e to Ey, joining two of the subtrees

4. repeat process from step 2 until a single spanning tree exists,
which is equivalent to saying |Ey| = |Vg| — 1

Kruskal's MST

A
{]

B C
[]
D
[]

E® oF
[]

G

Edge weights: 2, 3, 4, 5, 5, 8, 10, 12, 14, 18, 26, and 30

Kruskal's MST Algorithm

Procedure Kruskal (G): H
// PRE: G is connected
// POST: H is an MST of G

begin
put n vertices into n singleton trees

H={1}

// repeat until tree has n-1 edges
while |EH| < |[VG] - 1
a) find the min_cost_edge e in EG
b) if H remains a forest when e is added
add e to VH
c) delete e from EG
end

Implementing Kruskal's Algorithm

» We need to be able to (quickly) find the next cheapest edge

» Using a min-heap vs sorted list
> Heap is better since not every edge may be examined / removed

» But, what's a heap?

Priority Queues and Heaps

» A Priority Queue is a data structure supporting the
operations:

1. insert() and

2. removeMin() (or removeMax(), depending upon the problem)
» One way to implement priority queues is with a heap
> A heap is an essentially complete binary tree, i.e.:

1. all levels are full except possibly bottom level (leaves)

2. all bottom nodes are in left-most positions.

Heap Implementation

Heaps can be efficiently implemented with arrays, which form an
implicit (vs explicit) representation of a tree. For example:

=‘ | 2| 3]4]s|6|7][8]o]10]1]12]
L [20]10]15][8|7]14|3]5]6]4[2]1]
Where Children of L[i] are in positions 2*i and (2*i)+1

20

The Min—heap Property

An array L[k..n] has the Min—heap property if

, . n
Vi k<i< =:

5 L[] < L[2i] and L[] < L[2i +1]

if nis even, then L[] < L[n]

In other words: Parents are smaller than their children, or child
in the case n is even.

removeMin() (Max) Algorithm

v

Send out the first value in heap as min (max)

v

Put last value (x) of heap in position 1: L[1] = L[size]

» Decrement heap size

v

Trickle—=down x through heap by swapping it with the smaller
(larger) child until smaller (larger) child is larger (smaller) than x.

Example — removeMax ()

max is deleted,
last child is moved up,
and trickled down

Insert () Algorithm

> Increment heap size
» Put new value (x) in L[size]

» While x is smaller (bigger) than its parent, swap them (aka
percolate— or bubble-up)

0]
® @ @
®® @2(17)

Complexity of Heap Operations
> Observation: if a heap of height h has n nodes, then

2/1 < n < 2h+1

one leaf at level h versus a complete tree

v

Take the log of each part of the inequality:

h < logn < h+1

» Subtracting 1, we find:

logn—1 < h < logn

» Hence, to traverse the heap from root to leaf, or in reverse, takes
O(log n) time.

Thus, both Insert() and Delete() take O(log n) time.

v

What if we merely kept an unordered list?

v

Delete: find, delete item, and fill in
> array: O(n) + O(1) + O(1) = O(n)
> linked list: O(n)+ O(1) = O(n)

v

Insert: array / linked list: O(1)

An ordered list?

v

Delete: find, delete item, and fill in
> array: O(1) + O(1) + O(n) = O(n)
» linked list: O(1) + O(1) = O(1)

v

Insert: find position, insert (move)
> array: O(log n) + O(n) = O(n)
> linked list: O(n)+ O(1) = O(n)

An Aside: Heapsort

» An array, L, can be sorted as follows:
1. Turn L[1..n] into a heap (aka heapify)

2. Remove() n times, storing the removed (min or max) value at the
end of the heap, then decrement size of heap

» How fast is this sort?

» Step 2 takes time:

log (n)+log(n—1)+---+log(l) = Zlogi € O(nlogn)

i=1l..n

» Step 17 It depends ...

21

Heapifying — Method 1: Top—down
for i =2 ton
BubbleUp(L[1..il)

// invariant: L[1..i] is a heap

(Max)-Heapify: 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20

Method 1 Complexity Analysis
» Complexity? All nodes at depth j take j swaps in worst case, so:
T(n) = Z Jj X number of nodes at depth j
j=0..h
» We have at most 2/ nodes at depth j, so:
T(n) <> (x2) = (h-1)2"1+2
j=0..h

» We know h < logn, so:

T(n) (log (n —1))2'8"*t 4 2
log n(n) + 2
nlogn+2

O(nlog n)

m IA IN A

23

Can We Create Heaps Any Faster?

» Method 1: Top—down moves many (about 5) elements by
log n in the worst case (if already in order, all 5 last inserts must
percolate to the top!)

» Consider Method 2: Bottom—up, where we assume the leaves
are in place and use sift—down on the top 7 elements.

This moves fewer elements by the height of the tree.

Heapifying — Method 2: Bottom—up
// PRE: L[n/2 + 1 .. n] already a heap
for i = n/2 downto 1
SiftDown(L[i..n])
// invariant: L[i..n] satisfies the
// heap property

Method

2 Complexity Analysis

» We have the recurrence relation:

T(n) < 2T(L§J) Tlogn

> We brilliantly guess that

T(n) = O(n—logn), so
T(n) < cn — dlogn

(Max)-Heapify: 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20 » Thus
T(n) < 2T(g)+|ogn
< 2(c(§) - dlogg)JrIogn
= cnf2dlogg+logn
= cn—2d(logn—log2)+logn
= cn—2dlogn—+2d+logn
= cn—2dlogn+logn+2d
25 26
> And we would like: » Pick d = 1, then
cn—2dlogn+logn+2d < cn—dlogn 2d 2(%)
d—1 (-1
> So we want: G-1)
2
—dlogn+logn+2d < 0 - %1
(I1—d)logn+2d < 0 2
2d < —(1-d)logn 1
2d < (d—1)logn - ()
2d < o
d—1 = °&" = -2
27 28
Back to Implementing Kruskal's Algorithm

» Oops, d — 1 must be positive ...Pick d = 2, then

22 _ 4 _
2-1) =31 = 4, and
2
(d—dl) < logn, for n>2=16

» We would also need to show that T(n) < cn— dlog n, which is
no problem.

Homework: Max-heapify (both methods):
3,21,19,8,7,13,24,16,31,22,14,1, 12,81, 5

29

» We

v

v

needed to be able to find the next cheapest edge

Use a min-heap of edges. (All |[Eg| of them.)

Fastest heapify? O(n) for n keys, thus it takes O(|Eg|) time to
make the heap

In worst case, O(|Eg|) edges may be removed.
Let n = |Vg| and p = | Eg|

Then total heap processing / activity time is:
O(p + plog, p) for the heapify + O(p * delete_min) deletes

Finishing Up Kruskal's Algorithm

» Note: since p < (g) - ('#T*“) p € O(nz), so: > Whét else needs to be done? We need to be able to tell wh‘ether
adding an edge to the subgraph H forms a forest or results in a
logp € O(logn?) cycle.
€ O(2logn)
€ O(logn) > If not cycle is formed, then we need to be able to merge the two

trees that the edge connects.

2 . .
Thus, plogp € O(plogn) or O(n*logn). » That is, H represents a set of trees. Given an edge
e = < u,v>, we need to know if vertices u and v are in the
same tree. If not (no cycle), merge the trees in which they're
found.

31 32

The Union—Find Data Structure

» What we need is a data structure which will hold a collection of
disjoint sets (vertices in trees), and allow efficient
implementation of:

1. Union(i, j): merge sets i and j

2. Find(x): determine which set contains x

> Such a data structure is called a Union—Find or Disjoint—Set
data structure.

33

