
Mat 3770

Spring 2014

1

Week 9 — Student Responsibilities

I Reading: Chapter 3.3–3.4 (Tucker), 10.4–10.5 (Rosen)

I Homework

Due date Tucker Rosen

3/21 3.2 10.3

3/21 DFS & BFS Worksheets

3/26 3.3 10.4, 10.5

3/28 Heapify worksheet

I Attendance Truly, Madly, Deeply Encouraged

2

3.3 Spanning Trees

I A spanning tree of a graph G is a subgraph of G that is a tree
containing all vertices of G.

I A minimal spanning tree is a spanning tree whose sum of the
edge weights (lengths) is as small as possible.

I Problem Statement: Given a graph G = (V, E) with positive
edge weights (cost: E → <+), find the cheapest connected
spanning subgraph H of G.

I Note: If H = (V, EH), then cost(H) =
∑

e∈E(H) cost(e), i.e.,
cost of subgraph is sum of costs of edges in subgraph.

3

Example: Minimal Spanning Tree

A

B

D

C

E

F

5

5

4

4

4

3

6

3

6
8

4

Observations

I H must be a tree (if H exists). Why?

1. must span and be connected

2. if cycle, then extra edge with positive weight, which could be
removed to reduce cost

I If G has n vertices (|V | = n), then any minimal spanning tree of
G has N − 1 edges.

I A graph with no cycles is called a forest

I A connected forest is called a tree

5

Prim’s Minimal Spanning Tree

Idea: “Grow” a Tree

1. Pick an arbitrary vertex in the graph, place in VH

2. From among the edges going from VH to vertices not in VH ,
choose a cheapest one, say edge e to vertex x

3. Add vertex x to VH and e to EH

4. Repeat process from step 2 until no more vertices remain to be
added to VH , which is equivalent to saying |EH | = |VG | − 1

6

Prim’s Minimal Spanning Tree, Start at A

A

CB

D

E F

G

A

CB

D

E F

G

8 5
10

2 5

18 3

12
14

30

4 26

7

Prim’s MST Algorithm

Procedure Prim (G): H

// PRE: G is connected

// POST: H is an MST of G

begin

pick an arbitrary vertex x in the vertices of G,

and add it to VH, the vertices in H

from among the edges incident to x, select the

cheapest and add it to EH, the edges in H

while |EH| < |VG| - 1

find the cheapest edge <a, b>

where a is in VH, and b is in VG - VH

add <a, b> to EH, add b to VH

end

8

Kruskal’s MST

Idea: connect forests until one tree

1. Place the vertices of VG into |VG | = n individual subtrees

2. Find the minimum cost edge, e ∈ EG , which doesn’t cause a
cycle in the spanning forest

3. Add e to EH , joining two of the subtrees

4. repeat process from step 2 until a single spanning tree exists,
which is equivalent to saying |EH | = |VG | − 1

9

Kruskal’s MST

A

CB

D

E F

G

A

CB

D

E F

G

8 5
10

2 5

18 3

12
14

30

4 26

Edge weights: 2, 3, 4, 5, 5, 8, 10, 12, 14, 18, 26, and 30

10

Kruskal’s MST Algorithm

Procedure Kruskal (G): H

// PRE: G is connected

// POST: H is an MST of G

begin

put n vertices into n singleton trees

H = { }

// repeat until tree has n-1 edges

while |EH| < |VG| - 1

a) find the min_cost_edge e in EG

b) if H remains a forest when e is added

add e to VH

c) delete e from EG

end

11

Implementing Kruskal’s Algorithm

I We need to be able to (quickly) find the next cheapest edge

I Using a min-heap vs sorted list

I Heap is better since not every edge may be examined / removed

I But, what’s a heap?

12

Priority Queues and Heaps

I A Priority Queue is a data structure supporting the
operations:

1. insert() and

2. removeMin() (or removeMax(), depending upon the problem)

I One way to implement priority queues is with a heap

I A heap is an essentially complete binary tree, i.e.:

1. all levels are full except possibly bottom level (leaves)

2. all bottom nodes are in left–most positions.

13

Heap Implementation

Heaps can be efficiently implemented with arrays, which form an
implicit (vs explicit) representation of a tree. For example:

i = 1 2 3 4 5 6 7 8 9 10 11 12

L 20 10 15 8 7 14 3 5 6 4 2 1

Where Children of L[i] are in positions 2*i and (2*i)+1.

5 6 4 2 1

8 7 14 3

1510

20

14

The Min–heap Property

An array L[k..n] has the Min–heap property if

∀ i 3 k ≤ i <
n

2
: L[i] ≤ L[2i] and L[i] ≤ L[2i + 1]

if n is even, then L[n2] ≤ L[n]

In other words: Parents are smaller than their children, or child
in the case n is even.

15

removeMin() (Max) Algorithm

I Send out the first value in heap as min (max)

I Put last value (x) of heap in position 1: L[1] = L[size]

I Decrement heap size

I Trickle–down x through heap by swapping it with the smaller
(larger) child until smaller (larger) child is larger (smaller) than x.

16

Example — removeMax()

20

10 15

8 7 14 3

5 6 4 2 1

max is deleted,

last child is moved up,

and trickled down

1

10 15

8 7 14 3

5 6 4 2

17

Insert() Algorithm

I Increment heap size

I Put new value (x) in L[size]

I While x is smaller (bigger) than its parent, swap them (aka
percolate– or bubble–up)

15

10 14

8 7 1 3

5 6 4 2 17

18

Complexity of Heap Operations

I Observation: if a heap of height h has n nodes, then

2h ≤ n ≤ 2h+1

one leaf at level h versus a complete tree

I Take the log of each part of the inequality:

h ≤ log n ≤ h + 1

I Subtracting 1, we find:

log n − 1 ≤ h ≤ log n

I Hence, to traverse the heap from root to leaf, or in reverse, takes
O(log n) time.

I Thus, both Insert() and Delete() take O(log n) time.

19

What if we merely kept an unordered list?

I Delete: find, delete item, and fill in
I array: O(n) + O(1) + O(1) = O(n)

I linked list: O(n) + O(1) = O(n)

I Insert: array / linked list: O(1)

An ordered list?

I Delete: find, delete item, and fill in
I array: O(1) + O(1) + O(n) = O(n)

I linked list: O(1) + O(1) = O(1)

I Insert: find position, insert (move)
I array: O(log n) + O(n) = O(n)

I linked list: O(n) + O(1) = O(n)

20

An Aside: Heapsort

I An array, L, can be sorted as follows:

1. Turn L[1..n] into a heap (aka heapify)

2. Remove() n times, storing the removed (min or max) value at the
end of the heap, then decrement size of heap

I How fast is this sort?

I Step 2 takes time:

log (n) + log (n − 1) + · · ·+ log (1) =
∑

i=1..n

log i ∈ O(n log n)

I Step 1? It depends . . .

21

Heapifying — Method 1: Top–down

for i = 2 to n

BubbleUp(L[1..i])

// invariant: L[1..i] is a heap

(Max)–Heapify: 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20

22

Method 1 Complexity Analysis

I Complexity? All nodes at depth j take j swaps in worst case, so:

T (n) =
∑

j=0..h

j × number of nodes at depth j

I We have at most 2j nodes at depth j , so:

T (n) ≤
∑

j=0..h

(j × 2j) = (h − 1)2h+1 + 2

I We know h ≤ log n, so:

T (n) ≤ (log (n − 1))2log n+1 + 2

≤ log n(n) + 2

≤ n log n + 2

∈ O(n log n)

23

Can We Create Heaps Any Faster?

I Method 1: Top–down moves many (about n
2) elements by

log n in the worst case (if already in order, all n
2 last inserts must

percolate to the top!)

I Consider Method 2: Bottom–up, where we assume the leaves
are in place and use sift–down on the top n

2 elements.

This moves fewer elements by the height of the tree.

24

Heapifying — Method 2: Bottom–up
// PRE: L[n/2 + 1 .. n] already a heap

for i = n/2 downto 1

SiftDown(L[i..n])

// invariant: L[i..n] satisfies the

// heap property

(Max)–Heapify: 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20

25

Method 2 Complexity Analysis
I We have the recurrence relation:

T (n) ≤ 2T (bn
2
c) + log n

I We brilliantly guess that

T (n) = O(n − log n), so

T (n) ≤ cn − d log n

I Thus
T (n) ≤ 2T (

n

2
) + log n

≤ 2(c(
n

2
)− d log

n

2
) + log n

= cn − 2d log
n

2
+ log n

= cn − 2d(log n − log 2) + log n

= cn − 2d log n + 2d + log n

= cn − 2d log n + log n + 2d

26

I And we would like:

cn − 2d log n + log n + 2d ≤ cn − d log n

I So we want:

−d log n + log n + 2d ≤ 0

(1− d) log n + 2d ≤ 0

2d ≤ −(1− d) log n

2d ≤ (d − 1) log n

2d

d − 1
≤ log n

27

I Pick d = 1
2 , then

2d

d − 1
=

2(12)

(12 − 1)

=
2
2
−1
2

=
1

(−12)

= −2

28

I Oops, d − 1 must be positive . . . Pick d = 2, then

2(2)

(2− 1)
=

4

1
= 4, and

2d

(d − 1)
≤ log n, for n ≥ 24 = 16

I We would also need to show that T (n) ≤ cn− d log n, which is
no problem.

Homework: Max–heapify (both methods):
3, 21, 19, 8, 7, 13, 24, 16, 31, 22, 14, 1, 12, 81, 5

29

Back to Implementing Kruskal’s Algorithm

I We needed to be able to find the next cheapest edge

I Use a min-heap of edges. (All |EG | of them.)

I Fastest heapify? O(n) for n keys, thus it takes O(|EG |) time to
make the heap

I In worst case, O(|EG |) edges may be removed.

I Let n = |VG | and p = |EG |
Then total heap processing / activity time is:
O(p + p log2 p) for the heapify + O(p ∗ delete min) deletes

30

I Note: since p ≤
(n
2

)
= (n2−n)

2 , p ∈ O(n2), so:

log p ∈ O(log n2)

∈ O(2 log n)

∈ O(log n)

Thus, p log p ∈ O(p log n) or O(n2 log n).

31

Finishing Up Kruskal’s Algorithm

I What else needs to be done? We need to be able to tell whether
adding an edge to the subgraph H forms a forest or results in a
cycle.

I If not cycle is formed, then we need to be able to merge the two
trees that the edge connects.

I That is, H represents a set of trees. Given an edge
e = < u, v >, we need to know if vertices u and v are in the
same tree. If not (no cycle), merge the trees in which they’re
found.

32

The Union–Find Data Structure

I What we need is a data structure which will hold a collection of
disjoint sets (vertices in trees), and allow efficient
implementation of:

1. Union(i, j): merge sets i and j

2. Find(x): determine which set contains x

I Such a data structure is called a Union–Find or Disjoint–Set
data structure.

33

