	Homework				
Mat 3770 Week 10		Due date	Tucker	Rosen	
		3/18	3.3	10.4, 10.5	
		3/20	Heapify	worksheet	
Spring 2014					
1	2				

The Union-Find Data Structure

Given a collection of disjoint sets $S = \{s_1, s_2, \ldots, s_k\}$, we need the operations:

- Find(S, x) : return the set ID of the set containing x
- $Merge(S, s_i, s_j)$: combine s_i and s_j into a single set

Implementation:

```
Assume set elements are {1, ..., n} Use array S[1..n] where S[i] = name of the set containing i
```

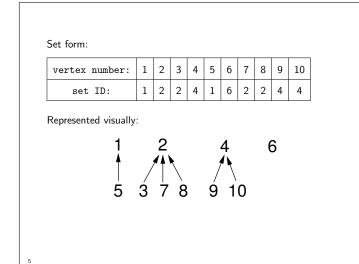
First Attempt

 $\ensuremath{\text{Try}}\xspace1.$ Let the name of the set be the smallest element in the set.

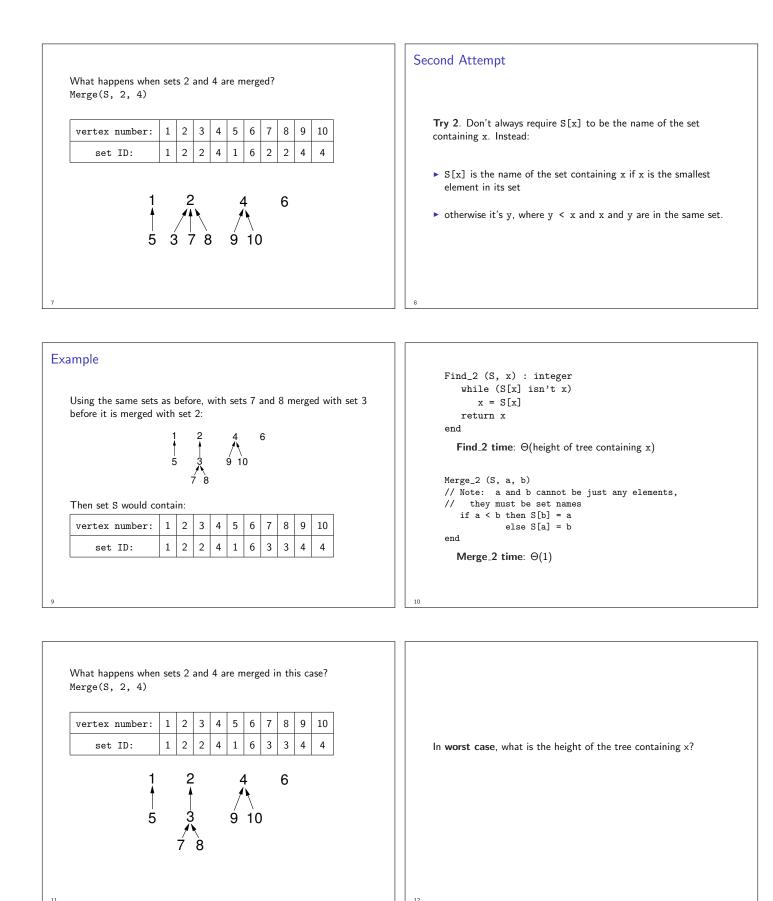
 $\ensuremath{\mbox{Example}}$. Suppose we have merged several sets and currently have:

Then set S would contain:

vertex number:	1	2	3	4	5	6	7	8	9	10
set ID:	1	2	2	4	1	6	2	2	4	4



<pre>Find_1 (S, x) : integer return S[x] end</pre>	
Find_1 time : $O(1)$	
<pre>Merge_1 (S, a, b) if a > b then swap(a,b) for i = 1 to n if S[i] is b then S[i] = a</pre>	// now a <= b // fix names
end	
Merge_1 time: $O(n)$	

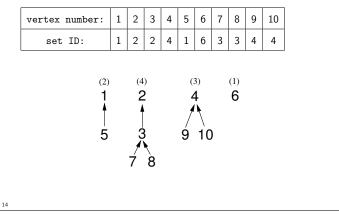


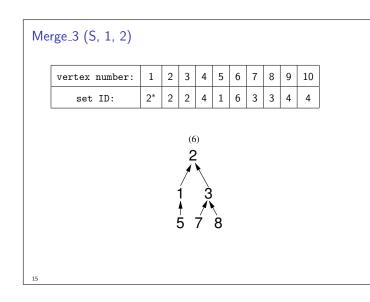
Third Attempt Try 3. Keep the tree height to logarithmic size. Idea: Balancing keep a list of tree sizes merge the smaller tree into the bigger tree Note: Size information only needs to be maintained at the root of each tree.

Example

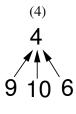
16

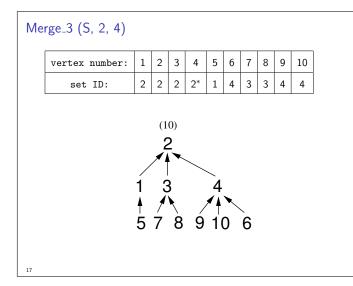
Same as Second attempt, but with addition of size information:

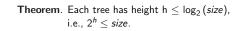




	rge_3 (S, 4, 6)										
	vertex number:	1	2	3	4	5	6	7	8	9	10
ſ	set ID:	2	2	2	4	1	4*	3	3	4	4





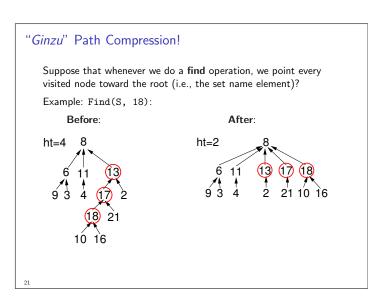


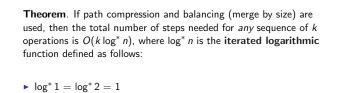
(Proof is by induction on the number of unions)

```
Find_3 (S, x) : integer
                                   // same as Find_2
      while (S[x] isn't x)
         x = S[x]
      return x
  end
Find_3 time: \Theta(\text{height of tree containing } \mathbf{x}) = \Theta(\log n)
  Merge_3 (S, a, b)
    if size[a] <= size[b]</pre>
                                  // merge smaller
         S[a] = b
                                    // into larger
          size[b] += size[a]
      else
          S[b] = a
          size[a] += size[b]
  end
Merge_3 time: \Theta(1)
```

Thus, any collection of k union-find operations takes at most $O(k \log n)$ time.

But, wait! That's not all!





- $\blacktriangleright \log^* n = 1 + \log^* \lceil \log_2 n \rceil$

Consider. . . Note: $2^{16} = 65,536$ $\log^* 2^{65,536} = 1 + \log^* \lceil \log_2 2^{65,536} \rceil$ $= 1 + \log^* \lceil \log_2 2^{2^{16}} \rceil$ $= 1 + (1 + \log^* \lceil \log_2 2^{16} \rceil)$ $= 2 + \log^* 16$ $= 2 + \log^* 16$ $= 2 + (1 + \log^* \lceil \log_2 2^4 \rceil)$ $= 3 + \log^* 4$ $= 3 + (1 + \log^* \lceil \log_2 2^2 \rceil)$ $= 4 + \log^* 2$ = 4 + 1 = 5A very slow growing function!