
Mat 3770
Week 10

Spring 2014

1

Homework

Due date Tucker Rosen

3/18 3.3 10.4, 10.5

3/20 Heapify worksheet

2

The Union-Find Data Structure

Given a collection of disjoint sets S = {s1, s2, . . . , sk}, we need the
operations:

I Find(S, x) : return the set ID of the set containing x

I Merge(S , si , sj) : combine si and sj into a single set

Implementation:

Assume set elements are {1, ..., n}

Use array S[1..n] where

S[i] = name of the set containing i

3

First Attempt

Try 1. Let the name of the set be the smallest element in the set.

Example. Suppose we have merged several sets and currently
have:

s1 = {1, 5} s2 = {2, 3, 7, 8} s3 = {}
s4 = {4, 9, 10} s5 = {} s6 = {6}
s7 = {} s8 = {} s9 = {}
s10 = {}

Then set S would contain:

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 1 2 2 4 1 6 2 2 4 4

4

Set form:

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 1 2 2 4 1 6 2 2 4 4

Represented visually:

1

5

2

73 8

4

9 10

6

5

Find_1 (S, x) : integer

return S[x]

end

Find 1 time: O(1)

Merge_1 (S, a, b)

if a > b then swap(a,b) // now a <= b

for i = 1 to n // fix names

if S[i] is b

then S[i] = a

end

Merge 1 time: O(n)

6



What happens when sets 2 and 4 are merged?
Merge(S, 2, 4)

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 1 2 2 4 1 6 2 2 4 4

1

5

2

73 8

4

9 10

6

7

Second Attempt

Try 2. Don’t always require S[x] to be the name of the set
containing x. Instead:

I S[x] is the name of the set containing x if x is the smallest
element in its set

I otherwise it’s y, where y < x and x and y are in the same set.

8

Example

Using the same sets as before, with sets 7 and 8 merged with set 3
before it is merged with set 2:

1

5

2 4

9 10

6

3

7 8

Then set S would contain:

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 1 2 2 4 1 6 3 3 4 4

9

Find_2 (S, x) : integer

while (S[x] isn’t x)

x = S[x]

return x

end

Find 2 time: Θ(height of tree containing x)

Merge_2 (S, a, b)

// Note: a and b cannot be just any elements,

// they must be set names

if a < b then S[b] = a

else S[a] = b

end

Merge 2 time: Θ(1)

10

What happens when sets 2 and 4 are merged in this case?
Merge(S, 2, 4)

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 1 2 2 4 1 6 3 3 4 4

1

5

2 4

9 10

6

3

7 8

11

In worst case, what is the height of the tree containing x?

12



Third Attempt

Try 3. Keep the tree height to logarithmic size.

Idea: Balancing

I keep a list of tree sizes

I merge the smaller tree into the bigger tree

Note: Size information only needs to be maintained at the root of
each tree.

13

Example

Same as Second attempt, but with addition of size information:

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 1 2 2 4 1 6 3 3 4 4

1

5

2

9 103

7 8

4 6
(2) (4) (3) (1)

14

Merge 3 (S, 1, 2)

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 2∗ 2 2 4 1 6 3 3 4 4

3

7 8

1

5

2
(6)

15

Merge 3 (S, 4, 6)

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 2 2 2 4 1 4∗ 3 3 4 4

4

109 6

(4)

16

Merge 3 (S, 2, 4)

vertex number: 1 2 3 4 5 6 7 8 9 10

set ID: 2 2 2 2∗ 1 4 3 3 4 4

2

5 10

1 3

7 98 6

4

(10)

17

Theorem. Each tree has height h ≤ log2 (size),
i.e., 2h ≤ size.

(Proof is by induction on the number of unions)

18



Find_3 (S, x) : integer // same as Find_2

while (S[x] isn’t x)

x = S[x]

return x

end

Find 3 time: Θ(height of tree containing x) = Θ(log n)

Merge_3 (S, a, b)

if size[a] <= size[b] // merge smaller

S[a] = b // into larger

size[b] += size[a]

else

S[b] = a

size[a] += size[b]

end

Merge 3 time: Θ(1)

19

Thus, any collection of k union–find operations takes at most
O(k log n) time.

But, wait! That’s not all!

20

“Ginzu” Path Compression!

Suppose that whenever we do a find operation, we point every
visited node toward the root (i.e., the set name element)?

Example: Find(S, 18):

Before: After:

8

6 11 13

9 3 4 17 2

18 21

1610

ht=4

6 11 13

9 3 4

ht=2 8

17 18

21 10 162

21

Theorem. If path compression and balancing (merge by size) are
used, then the total number of steps needed for any sequence of k
operations is O(k log∗ n), where log∗ n is the iterated logarithmic
function defined as follows:

I log∗ 1 = log∗ 2 = 1

I log∗ n = 1 + log∗ dlog2 ne

22

Consider. . .
Note: 216 = 65, 536

log∗ 265,536 = 1 + log∗ dlog2 265,536e
= 1 + log∗ dlog2 22

16e
= 1 + log∗ 216

= 1 + (1 + log∗ dlog2 216e)
= 2 + log∗ 16

= 2 + log∗ 24

= 2 + (1 + log∗ dlog2 24e)
= 3 + log∗ 4

= 3 + (1 + log∗ dlog2 22e)
= 4 + log∗ 2

= 4 + 1 = 5

A very slow growing function!

23


