
Mat 3770
Week 11

Spring 2014

1

Homework

Due date Tucker Rosen

4/7 4.1 9.6, set 1

4/7 Dijkstra–I worksheet

4/9 9.6, set 2

4/9 Dijkstra–II worksheet

4/11 3.4 10.5

4/11 TSP worksheet

2

Week 11 — More Student Responsibilities

I Reading, Tucker: 4.1, 3.4

I Reading, Rosen: 9.6, (653–655)

I Attendance Spring-i-ly Encouraged

3

Single Source – Shortest Paths

I Problem Statement:

Given a direct graph G = (V, E), with edge weights
and a vertex v ∈ V, find the weight of a shortest path
from v to every other vertex in G.

I Assumptions:

1. Weights are positive real numbers (w : EG → <+)

2. Path weights = sum of weights of all edges in the path

3. Define SHORT(w) to be the weight of the shortest path from v
to w.

4

An Example

50

50
5

70

20

30

10

10

10
0

20

B

C

E

F

A

D

Graph G

Let v = A

SHORT (A) = 0

SHORT (B) = 35

SHORT (C) = 30

SHORT (D) = 20

SHORT (E) = 10

SHORT (F) = 40

5

Idea Behind the Algorithm

Grow a tree of shortest paths
from v to other vertices in VG .

V − SG

G

v

S

Graph G

6

Let S ⊆ VG , v ∈ S.
Suppose for each w ∈ S, we know SHORT(w).

50

10

30

100

10

V−SGS
(v)

E

A
C

B

D F

Graph G

For each (w, u) ∈ Eg , where w ∈ S, u ∈ VG - S, look at
SHORT(w) + weight(w,u).

7

Claim:

If (w, u) is the edge minimizing

SHORT(w) + weight(w, u)

— over all w ∈ S and u ∈ V - S —

then

SHORT(u) = SHORT(w) + weight(w, u).

In other words, pick vertex from V - S to add to S which has the
least weight path.

Thus, we add u to S and (w, u) to the tree.

8

Proof: Consider (w, u)

k−1 kPv v

V − SG

G

v

w
u

S

Graph G

Let P = {v = v1, v2, . . . , vk} be the least weight path from v to
some vertex vk ∈ V - S.

9

I Observation: {v = v1, v2, . . . , vk−1} are all in S !
(Else there is a shorter path, ending before vk).

I Hence
weight(P) = SHORT(vk−1) + weight(vk−1, vk)

≥ SHORT(w) + weight(w, u)

I Thus, [the shortest path from v to w] + [edge(w, u)]
gives a path from v to u which is as short as any path from v to
any x ∈ V - S.

10

SHORT(i)

Step S V-S A B C D E F

Init A BCDEF 0 ∞ ∞ ∞ ∞ ∞
1 AE BCDF 0 ∞ ∞ ∞ 10 ∞
2 AED BCF 0 ∞ ∞ 20 10 ∞
3 AEDC BF 0 ∞ 30 20 10 ∞
4 AEDCB F 0 35 30 20 10 ∞
5 AEDCBF 0 35 30 20 10 40

We want to minimize SHORT(w) + weight(w, u).

11

Algorithm — First Pass

Dijkstra(G, v) : SHORT[1..n]

// Initializations

S ← v

SHORT[v] ← 0

FOR each w 6= v do

SHORT[w] ← ∞

// Build tree of shortest paths
While |S | < |V | do

Find edge e = (w, u) such that w ∈ S, u ∈ V-S, and
SHORT(w) + weight(w, u) is minimal

SHORT(u) ← SHORT(w) + weight(w, u)

S ← S ∪ {u}

12

Implementation Analysis

I What are the slow steps — i.e., what will bound our time?

Find edge e = (w, u) such that w ∈ S, u ∈ V-S, and
SHORT(w) + weight(w, u) is minimal

I Suppose we had a TABLE, D[1..n], for u 6∈ S, where:

D[u] = minw∈S { SHORT[w] + weight(w, u) }

13

I Then we could

1. search the list D for best u and add u to S

2. next we would update D, since D[u’] may have changed for some
elements

I So, how long to update D?

1. Well, how many elements need changed?

2. At most, outdeg(u) vertices — the neighbors of u

I Thus, overall time updating D is:
∑

u∈V outdeg(u) = |E |

I and, the algorithm takes time:

O(|V | ∗ |V | + |E |) = O(|V |2 + |E |)

or # iterations × Search D + Update D

14

Dijkstra(v) // v is the source node

variables:

D[] — the length of the shortest path from v to each node

P[] — the parent of each node

// Initialize cost to each node from source

// and make source the parent

for all vertices u ∈ V

if (v, u) ∈ E

D[u] = weight(v, u)

else

D[u] = ∞
P[u] = v

15

// Delete source from nodes not considered so far

// and set distance to itself to 0

V’ = V - { v }
D[v] = 0

// Determine shortest distances and parents

for i = 1 to n − 1

Select u ∈ V’ such that D[u] = minx∈V ′ D[x]

V’ = V’ − { u }
for all w ∈ V’

//Do we get shorter path to w through u?

if D[w] > D[u] + weight(u, w)

D[w] = D[u] + weight (u,w)

P[w] = u

16

Obtaining Shortest Path Routes, source to sink

Idea: backtrack through parents until source is reached

for all nodes w ∈ V

// print shortest path from w to v

q = w

print q

while q 6= v

q = P[q]

print q

print q

17

Can We Do Better?

We always want to find the minimum in D

I If we implement D as a min–heap, Searching takes O(1) time

I But, how would we then update D?

I.e., when u is added to S, if (u, u’) ∈ E, u’ ∈ V-S, we may need
to change D[u’]

I Solution: Add a table, Dindex[1..n] which stores the position of
vertices in heap D

Whenever heap elements are moved, update Dindex[].

18

I Now, updating D and Dindex takes

outdeg(u) * log |V | steps

I So the algorithm takes

O((|V | + |E |) ∗ log |V |) time

I Is this better than O(|V |2 + |E |)

I Yes, if |E | ∈ O(|V |
2

log |V |)

For example, if G is planar or not “almost complete” (i.e.,
sparse).

19

The Traveling Salesperson Problem

I Problem Statement:
Given a graph, find the least–cost circuit which includes
every vertex — i.e., the cheapest Hamilton Circuit.

I Multiple Uses:

1. Business and industry, ex: robotic motion planning for wiring or
laser–drilled holes in circuit boards

2. Efficient routing of telephone calls and Internet connections

3. Archaeologists: help in determining the sequence of deposits

4. Delivery routes

20

Several algorithms

1. Brute Force

2. Nearest Neighbor

3. Branch and Bound

4. Approximation Algorithm, Using Minimal Spanning Tree

5. And others. . .

21

TSP: Brute Force

A

B C

D

A C

D

B

B
D

D
B

A
A

D
C D

C
A
A

B
C

C
B

A
A

1. Select a starting point

2. Enumerate all possible Hamilton Circuits with that starting point

3. Find the total weight of each circuit

4. choose one which produces the minimum cost

22

Brute Force Example

1

3

3

61 4

A

B C

D

Total weight
Circuit of the circuit
1. A→ B → C → D → A 3 + 6 + 3 + 1 = 13
2. A→ B → D → C → A 3 + 4 + 3 + 1 = 11
3. A→ C → B → D → A 1 + 6 + 4 + 1 = 12
4. A→ C → D → B → A (opp 2) 11
5. A→ D → B → C → A (opp 3) 12
6. A→ D → C → B → A (opp 1) 13

23

Efficiency of Brute Force?

I The Brute Force method provides a way to find a minimum
Hamilton circuit if one exists (optimal solution).

I Consider a complete, weighted graph with 10 vertices. How
many circuits and total weights would we have to calculate for
this graph? (10!, or 3,628,800 Hamilton circuits, but we’d only
have to calculate the weights for half of them. . .)

I So, in worst case, if the graph had n vertices, how long would
this algorithm take to execute? Is that feasible?

I If we used the Brute Force algorithm as the basis for a program
for a super–computer, and had fed it a 100–vertex TSP when
the universe was created, it would still be far from
done. . . (100! = 9.3326211544× 10157)

24

Approximation Algorithms

Algorithms which do not take too much computer time,

and that give reasonably good solutions

most of the time are called

approximation algorithms.

25

Nearest Neighbor Algorithm

Idea: choose as the next vertex, the nearest one to the current
vertex. (Used on complete graphs.)

1. Choose a starting point for the circuit; say vertex A

2. Check all the edges incident to A, and choose one that has
smallest weight; proceed along this edge to the next vertex

3. Repeat

At each vertex you reach, check the edges from there
to vertices not yet visited. Choose one with smallest
weight. Proceed along this edge to the next vertex.

until all vertices have been reached

4. Return to the starting vertex

26

Nearest Neighbor Example

A courier is based at the head office (A), and must deliver documents to

four other offices (B, C, D, and E). The estimated time of travel in

minutes between each of these offices is shown on the graph below.

10

7

5

209
13 9

8 8
3

A

B

C D

E

Use the Nearest Neighbor algorithm to find an approximate solution to

this problem. Calculate the total time required to cover the chosen route.

Begin at A.

27

Answer:

Total Weight:

Is this the optimum answer?

28

Starting Circuit Using

Vertex Nearest Neighbor Total Weight

A A→ D → E → B → C → A 9 + 5 + 3 + 10 + 13 = 40

B B → E → D → C → A→ B 3 + 5 + 7 + 13 + 9 = 37

C C → D → E → B → A→ C 7 + 5 + 3 + 9 + 13 = 37

D D → E → B → A→ C → D 5 + 3 + 9 + 13 + 7 = 37

E E → B → D → C → A→ E 3 + 8 + 7 + 13 + 20 = 51

I Any circuit of minimum weight may be used.

I Since these are circuits, may begin at any office.

I Have we found a minimum Hamilton Circuit?

Optimality is not guaranteed with Approximation Algorithms.

29

The Branch and Bound Algorithm

A general and usually inefficient method for solving optimization
problems.

Goal

Find the best (i.e., optimal) solution to a problem.
Used for optimization problems and Artificial Intelligence

30

Branch and Bound Ideas

I Examine all feasible solutions in an orderly manner: the
configurations of solutions (the Search Space) can be stored or
represented in a tree structure.

I Search the tree using a depth–first approach: the traversal of
one downward path in the tree produces a (possibly infeasible)
solution.

I Eliminate as many of the feasible and infeasible solutions as
possible by pruning branches from the search tree.

I The aim is to avoid traversing the entire tree by stopping
searches at nodes (pruning) when it is ascertained an optimal
solution cannot be represented by the current path.

31

Branch and Bound Ideas, Continued

I We bound our solutions if possible so we can prune some of the
branches.

I We may be able to use both upper and lower bounds to aid in
pruning.

I Generally, it is hard to claim anything about the running time of
Branch and Bound algorithms.

32

Branch and Bound Overview

I Keep track of active nodes

I Choose the best value from among active nodes to determine
the next node to consider

I If the value of an active node is too large to lead to an optimal
solution, or too small to lead to a feasible solution, prune at
that node

33

Common Assumptions

I Costs are symmetric: it costs the same to get from A to B as it
does to get from B to A.

I Costs satisfy the triangle inequality: the cost to get from A to C
is less than or equal to the cost if one detours through B while
traveling from A to C.

34

Quick TSP Tour Construction

I Pick any node as a starting circuit consisting of one node

I While there exists a node not yet in the circuit

I Find nodes u and v such that

I u is not in the circuit

I v is in the circuit

I cost(u, v) is minimized

I Insert u immediately in front of v in the circuit

35

A

B

C

D
E

7

4
3

5
2

5

3

10

18
15

A B C D E A =

A C D E B A =

36

Using Branch & Bound

A

B

C

D
E

7

4
3

5
2

5

3

10

18
15

37

