
Mat3770 — Relations

Spring 2014

Student Responsibilities

I Reading: Textbook, Section 8.1, 8.3, 8.5

I Assignments:

Sec 8.1 1a-d, 3a-d, 5ab, 16, 28, 31, 48bd
Sec 8.3 1ab, 3ab, 5, 14a-c, 18(ab), 23, 26, 36
Sec 8.5 2ad, 5, 15, 22, 35, 43a-c, 61

I Attendance: Spritefully Encouraged

Overview

I Sec 8.1 Relations and Their Properties

I Sec 8.3 Representing Relations

I Sec 8.5 Equivalence Relations

Section 8.1 — Relations and Their Properties

Binary Relations

I Definition: A binary relation R from a set A to a set B is a
subset R ⊆ A× B.

I Note: there are no constraints on relations as there are on
functions.

I We have a common graphical representation of relations, a
directed graph.

Directed Graphs

I Definition: A Directed Graph (Digraph) D from A to B is:

1. a collection of vertices V ⊆ A ∪ B, and

2. a collection of edges E ⊆ A× B

I If there is an ordered pair e =< x , y > in R, then there is an arc
or edge from x to y in D. (Note: E = R)

I The elements x and y are called the initial and terminal vertices
of the edge e.

Relation Example

I Let A = { a, b, c },

I B = { 1, 2, 3, 4 }, and

I R be defined by the ordered pairs or edges:

{ < a, 1 >,< a, 2 >,< c, 4 > }

I Then we can represent R by the digraph D:
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Relation on a Single Set A

I Definition: A binary relation R on a set A is a subset of A× A
or a relation from A to A.

I Let A = { a, b, c }

I R = { < a, a >,< a, b >,< a, c > }

I Then a digraph representation of R is:
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Notes

I An arc of the form < x , x > on a digraph is called a loop.

I Question: How many binary relations are there on a set A?
Another way to think of it:

How many subsets are there of A × A?

Special Properties of Binary Relations

Given

1. A universe U

2. A binary relation R on a subset A of U

I Definition: R is reflexive IFF

∀ x [x ∈ A → < x , x >∈ R]

I Notes:
I If A = ∅, then the implication is vacuously true

I The void relation on an empty set is reflexive

I If A is not void, then all vertices in the reflexive relation must have
loops

Symmetric and Antisymmetric Properties

I Definition: R is symmetric IFF

∀x∀y [< x , y >∈ R → < y , x >∈ R]

Note: if there is an arc < x , y >, there must be an arc < y , x >

I Definition: R is antisymmetric IFF

∀x∀y [(< x , y >∈ R) ∧ (< y , x >∈ R) → x = y ]

Note: If there is an arc from x to y, there cannot be one from y
to x if x6= y.

To prove a relation is antisymmetric, show logically that if
< x , y > is in R and x 6= y, then < y , x > is not in R.

The Transitive Property

I Definition: R is transitive IFF

∀x∀y∀z [(< x , y >∈ R) ∧ (< y , z >∈ R) → < x , z >∈ R]

Note: If there is an arc from x to y and one from y to z, then
there must be one from x to z.

This is the most difficult property to check. We will develop
algorithms to check this later.

A B

C D

R reflexive symmetric antisymmetric transitive

A
√ √ √

B
C

√

D
√ √

Combining Relations — Set Operations

I A very large set of potential questions! For example, let R1 and
R2 be binary relations on a set A. Then we have questions of the
form:

If R1 has Property 1 and
R2 has Property 2,

does R1 ? R2 have Property 3?

I For example, If R1 is symmetric and R2 is antisymmetric, does it
follow that R1 ∪ R2 is transitive?

If so, we need to prove it;
otherwise, we can find a counterexample.



Another Example

I Let R1 and R2 be transitive on A. Does it follow that R1 ∪ R2 is
transitive?

I Consider:
I A = { 1, 2 }
I R1 = { < 1, 2 > }
I R2 = { < 2, 1 > }

I Then R1 ∪ R2 = { < 1, 2 >,< 2, 1 > }. which is not transitive.
(Why not?)

Composition of Relations

I Definition: Suppose
I R1 is a relation from A to B
I R2 is a relation from B to C

Then the composition of R2 with R1, denoted R2 ◦ R1, is the
relation from A to C:

If < x , y > is a member of R1 and
< y , z > is a member of R2 , then

< x , z > is a member of R2 ◦ R1

I For < x , y > to be in the composite relation R2 ◦ R1, there
must exist a y in B

I We read compositions right to left as in functions, applying R1
first, then R2 in this example.

Example of a Composite Relation
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R2 ◦ R1 = { < B , 2 >,< B , 4 > }

A Relation Composed with Itself

I Definition: Let R be a binary relation on A. Then the powers
Rn, n = 1, 2, 3, . . . are defined recursively by:

I Basis: R1 = R

I Induction: Rn+1 = Rn ◦ R

I Note: An ordered pair < x , y > is in Rn IFF there is a path of
length n from x to y following the arcs (in the direction of the
arrows) in R.

Composites on R
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A Very Important Theorem

R is transitive IFF Rn ⊆ R for n > 0.

Proof ( ⇒ ): R transitive → Rn ⊆ R

Use a direct proof with proof by induction

I Assume R is transitive & show Rn ⊆ R by induction
Basis: Obviously true for n = 1
Induction:

I IH: Assume Rk ⊆ R for some arbitrary k > 0
I IS: Show Rk+1 ⊆ R

Rk+1 = Rk ◦ R, so if < x , y > is in Rk+1, then there is a z such
that < x , z > is in Rk and < z , y > is in R.

But, since Rk ⊆ R, < x , z > is in R

R is transitive, so < x , y > is in R

Since < x , y > was an arbitrary edge, the result follows



Proof ( ⇐ )

To complete the proof, we need to show:

Rn ⊆ R → R is transitive

Use the fact that R2 ⊆ R and the definition of transitivity. Proof
left as an exercise. . .

Thus, (given a finished proof of the above) we have shown:

R is transitive IFF Rn ⊆ R for n > 0

Section 8.3 — Representing Relations

Connection Matrices

I Let R be a relation from A = { a1, a2, . . . , am } to
B = { b1, b2, . . . , bn }

I Definition: An m × n connection matrix, M, for R is defined
by:

mi ,j =

{
1 if < ai , bj > ∈ R
0 otherwise

Example

I Assume the rows are labeled with the elements of A and the
columns are labeled with the elements of B.

Let A = { a, b, c }, B = { e, f, g, h }, and

R = { < a, e >,< c , g > }

I Then the connection matrix M for R is:




1 0 0 0
0 0 0 0
0 0 1 0




I Note: The order of the elements of A and B is important!

Theorem. let R be a binary relation on a set A and let M be its
connection matrix. Then:

I R is reflexive IFF Mi ,i = 1 for all 1 ≤ i ≤ |A|

I R is symmetric IFF M is a symmetric Matrix: M = MT

I R is antisymmetric if Mij = 0 or Mji = 0 for all i 6= j

Combining Connection Matrices — Join

I Definition: The join of two matrices, M1 and M2, denoted
M1 ∨M2, is the component–wise Boolean ”or” of the two
matrices.

I Fact: If M1 is the connection matrix for R1, and M2 is the
connection matrix for R2, then the join of M1 and M2,
M1 ∨M2, is the connection matrix for R1 ∪ R2

Combining Connection Matrices — Meet

I Definition:The meet of two matrices, M1 and M2, denoted
M1 ∧M2, is the component–wise Boolean ”and” of the two
matrices.

I Fact: If M1 is the connection matrix for R1, and M2 is the
connection matrix for R2, then the meet of M1 and M2,
M1 ∧M2, is the connection matrix for R1 ∩ R2



Finding Connection Matrix Combinations

Given the connection matrix for two relations, how does one find
the connection matrix for:

I The complement: (A× A)− R

I The relative complement: R1 − R2 and R2 − R1

I The symmetric difference: R1 ⊕ R2 = (R1 − R2) ∪ (R2 − R1)

The Composition

I Definition: Let M1 be the connection matrix for R1, and M2 be
the connection matrix for R2.

Then the Boolean product of these two matrices, denoted
M1 ⊗ M2, is the connection matrix for the composition of R2

with R1, R2 ◦ R1

(M1 ⊗M2)ij = ∨nk=1[(M1)ik ∧ (M2)kj)]

I Why? In order for there to be an arc < x , z > in the composition,
then there must be an arc < x , y > in R1 and an arc < y , z > in
R2 for some y.

Notes on Composition

I The Boolean product checks all possible y’s. If at least one such
path exists, that is sufficient.

I The matrices M1 and M2 must be conformable: the number of
columns of M1 must equal the number of rows of M2.

I If M1 is m × n and M2 is n × p, then M1 ⊗ M2 is m × p

Composition Example — R2 ◦ R1
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=

0 0
0 1
1 0
0 1

1M 0 0 0 1
0 1 0 0

0 1 0 0
=

1M M2 =
0 1
0 1
0 1

(M1 ⊗ M2)12 = [(M1)11 ∧ (M2)12] ∨
[(M1)12 ∧ (M2)22] ∨
[(M1)13 ∧ (M2)32] ∨
[(M1)14 ∧ (M2)42] ∨

= [0 ∧ 0] ∨ [1 ∧ 1] ∨ [0 ∧ 0] ∨ [0 ∧ 1]

= 1

I There is an arc in R1 from node 1 in A to node 2 in B

I There is an arc in R2 from node 2 in B to node 2 in C

I Hence, there is an arc in R2 ◦R1 from node 1 in A to node 2 in C.

I A useful result: MRn = (MR)n

Digraphs

Given the digraphs for R1 and R2, describe how to find the
digraphs for:

I Union: R2 ∪ R1

I Intersection: R2 ∩ R1

I Relative Complement: R2 − R1

I Boolean Product: R2 ⊗ R1

I Complement: A× A− R1

I Symmetric Difference: R1 ⊕ R2



Section 8.5 — Equivalence Relations

Wherein we define new types of important relations by grouping
properties of relations together.

Definition: A relation R on a set A is an equivalence relation
IFF R is:

I reflexive

I symmetric, and

I transitive

Equivalence Relations in Digraphs

Equivalence relations are easily recognized in digraphs

I The set of all elements related to a particular element forms a
subgraph in which all self–loops and arcs are present between the
included vertices.

I I.e., the digraph (or subdigraph) representing the subset will be a
complete digraph (or subdigraph).

I The number of such subsets is called the rank of the equivalence
relation.

All Equivalence Relations on a Set with 3 Elements

rank = 1

rank = 2

rank = 3

rank = 2

rank = 2

Equivalence Classes

I Each complete subset is called an equivalence class.

I A bracket around an element means the equivalence class in
which the element lies.

[x ] = {y | < x , y >∈ R}

I The element in the bracket is called a representative of the
equivalence class — we could have chosen any element in that
class.

I Three ways to say ”in the same equivalence class”:

aRb [a] = [b] [a] ∩ [b] 6= ∅

Example — Equivalence Classes

a b

c

[a] = {a, c}, [c] = {a, c}, [b] = {b}

rank = 2

Partitions

I Definition: Let S1,S2, . . . ,Sn be a collection of subsets of A.
Then the collection forms a partition of A if the subsets are
non–empty, disjoint, and exhaust A.

Si 6= ∅ Si ∩ Sj = ∅ if i 6= j
⋃

Si = A

S1

S3

S2

S4

S5

A



Theorem. The equivalence classes of an equivalence relation R
partition the set A into disjoint nonempty subsets whose union is
the entire set.

The partition is denoted A/R and is called:

I the quotient set or

I the partition of A induced by R, or

I A modulo R

Examples

1. The set of integers such that aRb IFF a = b or a = −b

2. The natural numbers mod any integer:
For example, N mod 3 divides the natural numbers into 3
equivalence classes: [0]3, [1]3, [2]3

3. a b

c

[a] = {a}, [b] = {b, c}, [c] = {b, c}

rank = 2

Theorem. Let R be an equivalence relation on A. Then either

[a] = [b]

or

[a] ∩ [b] = ∅

Why?

Review — R ⊆ A× A

I reflexive: (a, a) ∈ R ∀ a ∈ A

I symmetric: (b, a) ∈ R ↔ (a, b) ∈ R for a, b ∈ A

I antisymmetric:
(b, a) ∈ R and (a, b) ∈ R, then a = b for a, b ∈ A

I transitive:
(a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R for a, b, c ∈ A

Transitive Closure

I A path in a digraph is a sequence of connected edges.

I A path has length n, where n is the number of edges in the path.

I A circuit or cycle is a path that begins and ends at the same
vertex.

I The connectivity relation R? is the set of all pairs <a, b> such
that there is a path between a and b in the relation R.

This is also called the transitive closure of R.

Theorem. If R1 and R2 are equivalence relations on A, then
R1 ∩ R2 is an equivalence relation on A.

Proof outline:

It would suffice to show that the intersection of:

I reflexive relations is reflexive

I symmetric relations is symmetric, and

I transitive relations is transitive



Reflexive, Symmetric, Transitive Closure

Definition. Let R be a relation on A. Then the reflexive,
symmetric, transitive closure of R, denoted tsr(R), is an
equivalence relation induced by R on A.

Example:

tsr(R), rank = 2

a b

cd

R

a b

cd

A/R = { {a}, {b, c, d} }

A = [a] [b]  =  {a} {b, c, d}

Theorem. tsr(R) is an equivalence relation.

Proof. We must be careful and show that tsr(R) is still symmetric
and reflexive.

I Since we only add arcs (rather than delete arcs) when computing
closures, it must be that tsr(R) is reflexive since all loops
< x , x > on the digraph must be present when constructing r(R).

I If there is an arc < x , y >, then the symmetric closure of r(R)
ensures there is an arc < y , x >.

I We may now argue that if we construct the transitive closure of
sr(R) and we add an edge < x , z > because there is a path from
x to z, then there must also exist a path from z to x, and hence
we also must add an edge < z , x >. Hence the transitive closure
of sr(R) is symmetric.


