

Binary Relations

Section 8.1 — Relations and Their Properties

- ▶ Definition: A binary relation R from a set A to a set B is a subset R ⊆ A × B.
- Note: there are no constraints on relations as there are on functions.
- We have a common graphical representation of relations, a directed graph.

Directed Graphs

- ▶ Definition: A Directed Graph (Digraph) D from A to B is: 1. a collection of vertices $V \subseteq A \cup B$, and
 - 2. a collection of edges $\mathbf{E} \subseteq A \times B$
- ► If there is an ordered pair e =< x, y > in R, then there is an arc or edge from x to y in D. (Note: E = R)
- ► The elements x and y are called the **initial** and **terminal** vertices of the edge e.

Relation Example

- Let $A = \{ a, b, c \}$,
- ▶ $B = \{ 1, 2, 3, 4 \}$, and
- ▶ R be defined by the ordered pairs or edges: $\{ < a, 1 >, < a, 2 >, < c, 4 > \}$
- Then we can represent R by the digraph D:

Relation on a Single Set A

- ► **Definition**: A binary relation **R** on a set **A** is a subset of *A* × *A* or a relation from A to A.
- $\blacktriangleright \text{ Let } \mathsf{A} = \{ \text{ a, b, c} \}$
- $R = \{ < a, a >, < a, b >, < a, c > \}$
- ► Then a digraph representation of R is:

Notes Special Properties of Binary Relations Given 1. A universe U 2. A binary relation R on a subset A of U • An arc of the form $\langle x, x \rangle$ on a digraph is called a **loop**. Definition: R is reflexive IFF $\forall x \ [x \in A \rightarrow < x, x \ge R]$ • Question: How many binary relations are there on a set A? Another way to think of it: Notes: How many subsets are there of A \times A? • If $A = \emptyset$, then the implication is vacuously true The void relation on an empty set is reflexive If A is not void, then all vertices in the reflexive relation must have loops

Symmetric and Antisymmetric Properties

► Definition: R is symmetric IFF

 $\forall x \forall y [< x, y > \in R \rightarrow < y, x > \in R]$

Note: if there is an arc $\langle x, y \rangle$, there must be an arc $\langle y, x \rangle$

• Definition: R is antisymmetric IFF

 $\forall x \forall y [(< x, y > \in R) \land (< y, x > \in R) \rightarrow x = y]$

Note: If there is an arc from x to y, there cannot be one from y to x if $x{\ne}$ y.

To prove a relation is antisymmetric, show logically that if $\langle x, y \rangle$ is in R and $x \neq y$, then $\langle y, x \rangle$ is not in R.

The Transitive Property

► Definition: R is transitive IFF

 $\forall x \forall y \forall z [(< x, y > \in R) \land (< y, z > \in R) \rightarrow (< x, z > \in R]$

Note: If there is an arc from ${\sf x}$ to ${\sf y}$ and one from ${\sf y}$ to ${\sf z},$ then there must be one from ${\sf x}$ to ${\sf z}.$

This is the most difficult property to check. We will develop algorithms to check this later.

 \blacktriangleright For example, If R1 is symmetric and R2 is antisymmetric, does it follow that R1 \cup R2 is transitive?

If so, we need to prove it; otherwise, we can find a counterexample.

Example of a Composite Relation

R1

R2

- ▶ **Definition**: Let R be a **binary relation** on A. Then the powers R^n , n = 1, 2, 3, ... are defined recursively by:
 - ► Basis: R¹ = R
 - Induction: $R^{n+1} = R^n \circ R$
- ▶ Note: An ordered pair < x, y > is in Rⁿ IFF there is a path of length n from x to y following the arcs (in the direction of the arrows) in R.

Proof (\Leftarrow)

Example

To complete the proof, we need to show:

 $\mathsf{R}^n \subseteq \mathsf{R} o \mathsf{R}$ is transitive

Use the fact that $\mathsf{R}^2\subseteq\mathsf{R}$ and the definition of transitivity. Proof left as an exercise. . .

Thus, (given a finished proof of the above) we have shown:

R is transitive IFF $R^n \subseteq R$ for n > 0

Section 8.3 — Representing Relations

Connection Matrices

- ▶ Let R be a relation from A = { a₁, a₂,..., a_m } to B = { b₁, b₂,..., b_n }
- ► Definition: An $m \times n$ connection matrix, M, for R is defined by: $m_{i,j} = \begin{cases} 1 & if < a_i, b_j > \in R \\ 0 & otherwise \end{cases}$

 Assume the rows are labeled with the elements of A and the columns are labeled with the elements of B.

Let A = { a, b, c }, B = { e, f, g, h }, and $R = \{ \ < a, e >, < c, g > \}$

- Then the connection matrix M for R is: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- ▶ Note: The order of the elements of A and B is important!

 $\ensuremath{\text{Theorem}}$. Let R be a binary relation on a set A and let M be its connection matrix. Then:

- ▶ R is reflexive IFF $M_{i,i} = 1$ for all $1 \le i \le |A|$
- R is symmetric IFF M is a symmetric Matrix: $M = M^T$
- R is antisymmetric if $M_{ij} = 0$ or $M_{ji} = 0$ for all $i \neq j$

Combining Connection Matrices — Join

- ▶ Definition: The join of two matrices, M₁ and M₂, denoted M₁ ∨ M₂, is the component-wise Boolean "or" of the two matrices.
- Fact: If M₁ is the connection matrix for R₁, and M₂ is the connection matrix for R₂, then the join of M₁ and M₂, M₁ ∨ M₂, is the connection matrix for R₁ ∪ R₂

Combining Connection Matrices — Meet

- ▶ Definition: The meet of two matrices, M₁ and M₂, denoted M₁ ∧ M₂, is the component–wise Boolean "and" of the two matrices.
- ▶ **Fact**: If M_1 is the connection matrix for R_1 , and M_2 is the connection matrix for R_2 , then the meet of M_1 and M_2 , $M_1 \land M_2$, is the connection matrix for $R_1 \cap R_2$

Finding Connection Matrix Combinations

Given the connection matrix for two relations, how does one find the connection matrix for:

- The **complement**: $(A \times A) R$
- The relative complement: $R_1 R_2$ and $R_2 R_1$
- The symmetric difference: $R_1 \oplus R_2 = (R_1 R_2) \cup (R_2 R_1)$

The Composition

▶ **Definition**: Let *M*₁ be the connection matrix for *R*₁, and *M*₂ be the connection matrix for *R*₂.

Then the **Boolean product** of these two matrices, denoted $M_1 \otimes M_2$, is the connection matrix for the composition of R_2 with R_1 , $R_2 \circ R_1$

$$(M_1\otimes M_2)_{ij}=\vee_{k=1}^n[(M_1)_{ik}\wedge (M_2)_{kj})]$$

• Why? In order for there to be an arc $\langle x, z \rangle$ in the composition, then there must be an arc $\langle x, y \rangle$ in R₁ and an arc $\langle y, z \rangle$ in R₂ for some y.

- There is an arc in R_1 from node 1 in A to node 2 in B
- ► There is an arc in R₂ from node 2 in B to node 2 in C
- Hence, there is an arc in $R_2 \circ R_1$ from node 1 in A to node 2 in C.
- A useful result: $M_{R^n} = (M_R)^n$

Digraphs

Given the digraphs for \mathcal{R}_1 and $\mathcal{R}_2,$ describe how to find the digraphs for:

- Union: $R_2 \cup R_1$
- Intersection: $R_2 \cap R_1$
- Relative Complement: $R_2 R_1$
- **Boolean Product**: $R_2 \otimes R_1$
- Complement: $A \times A R_1$
- **Symmetric Difference**: $R_1 \oplus R_2$

Example — Equivalence Classes

 $[a] = \{a, c\}, \quad [c] = \{a, c\},$

rank = 2

 $[b] = \{b\}$

Equivalence Classes

- Each complete subset is called an equivalence class.
- A bracket around an element means the equivalence class in which the element lies.

$$[x] = \{y | < x, y > \in R\}$$

- ➤ The element in the bracket is called a representative of the equivalence class we could have chosen any element in that class.
- Three ways to say "in the same equivalence class":

▶ **Definition**: Let *S*₁, *S*₂, ..., *S*_n be a collection of subsets of A. Then the collection forms a **partition of A** if the subsets are **non–empty**, **disjoint**, and **exhaust A**.

Theorem. Let R be an equivalence relation on A. Then either

[a] = [b]

or $[a] \cap [b] = \emptyset$

The partition is denoted A/R and is called:

- the quotient set or
- the partition of A induced by R, or
- A modulo R

Examples

- 1. The set of integers such that aRb IFF $\mathsf{a}=\mathsf{b}$ or $\mathsf{a}=-\mathsf{b}$
- 2. The natural numbers mod any integer: For example, N mod 3 divides the natural numbers into 3 equivalence classes: $[0]_3,\ [1]_3,\ [2]_3$

Review — $R \subseteq A \times A$

- ▶ reflexive: $(a, a) \in R \quad \forall a \in A$
 - ▶ symmetric: $(b, a) \in R \leftrightarrow (a, b) \in R$ for $a, b \in A$
 - ▶ antisymmetric: (b, a) $\in R$ and (a, b) $\in R$, then a = b for $a, b \in A$
 - ▶ transitive: $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$

Why?

Transitive Closure

- A path in a digraph is a sequence of connected edges.
- A path has **length** *n*, where *n* is the number of edges in the path.
- ► A circuit or cycle is a path that begins and ends at the same vertex.
- The connectivity relation R* is the set of all pairs <a, b> such that there is a path between a and b in the relation R. This is also called the transitive closure of R.

Theorem. If R_1 and R_2 are equivalence relations on A, then $R_1 \cap R_2$ is an equivalence relation on A.

Proof outline:

It would suffice to show that the intersection of:

- reflexive relations is reflexive
- symmetric relations is symmetric, and
- transitive relations is transitive

Theorem. tsr(R) is an equivalence relation.

Proof. We must be careful and show that $\mathsf{tsr}(\mathsf{R})$ is still symmetric and reflexive.

Since we only add arcs (rather than delete arcs) when computing closures, it must be that tsr(R) is reflexive since all loops < x, x > on the digraph must be present when constructing r(R).

- ► If there is an arc < x, y >, then the symmetric closure of r(R) ensures there is an arc < y, x >.
- ▶ We may now argue that if we construct the transitive closure of sr(R) and we add an edge < x, z > because there is a path from x to z, then there must also exist a path from z to x, and hence we also must add an edge < z, x >. Hence the transitive closure of sr(R) is symmetric.