Mat3770 — Relations

Spring 2014

Student Responsibilities

» Reading: Textbook, Section 8.1, 8.3, 8.5
» Assignments:

Sec 8.1 1la-d, 3a-d, 5ab, 16, 28, 31, 48bd
Sec 8.3 1lab, 3ab, 5, 14a-c, 18(ab), 23, 26, 36
Sec 8.5 2ad, 5, 15, 22, 35, 43a-c, 61

» Attendance: Spritefully Encouraged

Overview

» Sec 8.1 Relations and Their Properties
» Sec 8.3 Representing Relations

» Sec 8.5 Equivalence Relations

Section 8.1 — Relations and Their Properties

Binary Relations

» Definition: A binary relation R from a set A to aset Bis a
subset R C A x B.

» Note: there are no constraints on relations as there are on
functions.

» We have a common graphical representation of relations, a
directed graph.

Directed Graphs

» Definition: A Directed Graph (Digraph) D from A to B is:
1. a collection of vertices V C AU B, and

2. a collection of edges E C Ax B

> If there is an ordered pair e =< x,y > in R, then there is an arc
or edge from x to y in D. (Note: E = R)

> The elements x and y are called the initial and terminal vertices
of the edge e.

Relation Example

» Let A={a b c},
»B={1234}, and

> R be defined by the ordered pairs or edges:
{<al><a2><c4>}

» Then we can represent R by the digraph D:
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Relation on a Single Set A

» Definition: A binary relation R on a set A is a subset of A x A
or a relation from A to A.

v

LetA={a, bc}

v

R={<aa><ab><ac>}

v

Then a digraph representation of R is:
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Notes

» An arc of the form < x, x > on a digraph is called a loop.

» Question: How many binary relations are there on a set A?
Another way to think of it:

How many subsets are there of A x A?

Special Properties of Binary Relations

Given
1. A universe U

2. A binary relation R on a subset A of U
» Definition: R is reflexive IFF
Vx [xeA = <x,x>€R)]

> Notes:
» If A= 0, then the implication is vacuously true

> The void relation on an empty set is reflexive

» If A is not void, then all vertices in the reflexive relation must have
loops

Symmetric and Antisymmetric Properties

» Definition: R is symmetric IFF
UxVy[< x,y >€ R =& <y,x>€R]

Note: if there is an arc < x,y >, there must be an arc < y,x >

» Definition: R is antisymmetric IFF
VxVy[(< x,y >€ R)A (< y,x >€ER) = x=y]

Note: If there is an arc from x to y, there cannot be one from y
to x if x#£ y.

To prove a relation is antisymmetric, show logically that if
< x,y >isin Rand x # vy, then < y,x > is not in R.

The Transitive Property

» Definition: R is transitive IFF

VxVyVz[(< x,y >€ R)A(<y,z>€R) — <x,z>€R]

Note: If there is an arc from x to y and one from y to z, then
there must be one from x to z.

This is the most difficult property to check. We will develop
algorithms to check this later.
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Combining Relations — Set Operations

» A very large set of potential questions! For example, let R1 and
R2 be binary relations on a set A. Then we have questions of the
form:

If R1 has Property_1 and
R2 has Property_2,
does R1 x R2 have Property_3?

» For example, If R1 is symmetric and R2 is antisymmetric, does it
follow that R1 U R2 is transitive?

If so, we need to prove it;
otherwise, we can find a counterexample.




Another Example

» Let R1 and R2 be transitive on A. Does it follow that R1 U R2 is
transitive?

» Consider:
»A={12}
»Rl={<12>}
»R2={<21>}

» Then RLUR2 ={ <1,2>,<2,1> }. which is not transitive.
(Why not?)

Composition of Relations

> Definition: Suppose
» R1 is a relation from A to B
» R2is a relation from B to C
Then the composition of R2 with R1, denoted R2 o R1, is the
relation from A to C:

If < x,y > is a member of R1 and
< y,z > is a member of R2, then
< x,z > is a member of R2 o R1

» For < x,y > to be in the composite relation R2 o R1, there
must exist a y in B

» We read compositions right to left as in functions, applying R1
first, then R2 in this example.

Example of a Composite Relation
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R1 R2

®
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R2oR1={<B,2><B,4>}

A Relation Composed with Itself

» Definition: Let R be a binary relation on A. Then the powers
R".n=1,2,3,... are defined recursively by:

» Basis: R =R

» Induction: R"! = R" o R

» Note: An ordered pair < x,y > is in R" IFF there is a path of
length n from x to y following the arcs (in the direction of the
arrows) in R.

Composites on R
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R*=R*R

R3= R*R

A Very Important Theorem
R is transitive IFF R” C R for n > 0.

Proof ( = ): R transitive - R" C R

Use a direct proof with proof by induction
» Assume R is transitive & show R” C R by induction
Basis: Obviously true forn =1
Induction:
> |H: Assume R* C R for some arbitrary k > 0
» IS: Show Rk C R
Rkt = R¥ o R, so if < X,y > isin R, then there is a z such
that < x,z > isin R“and < z,y > isin R.
But, since R C R, < x,z > isin R
R is transitive, so < x,y > isin R

Since < x,y > was an arbitrary edge, the result follows




Proof ( <)

To complete the proof, we need to show:

R" C R — R is transitive

Use the fact that R2 C R and the definition of transitivity. Proof
left as an exercise. . .

Thus, (given a finished proof of the above) we have shown:

R is transitive IFF R" C R forn > 0

Section 8.3 — Representing Relations

Connection Matrices

> Let R be a relation from A = { a1, a2,...,am } to
B={b,bo,....b,}

» Definition: An m x n connection matrix, M, for R is defined

by:
Y {1 if <a,-,bj> € R
mjj =

0 otherwise

Example

> Assume the rows are labeled with the elements of A and the
columns are labeled with the elements of B.
Let A={a b c}, B={ef gh} and
R={<ae><cg>}

1000
» Then the connection matrix M forRis: | 0 0 0 0
0010

» Note: The order of the elements of A and B is important!

Theorem. let R be a binary relation on a set A and let M be its
connection matrix. Then:

> Ris reflexive IFF M;; = 1 forall 1 < < |A|

» R is symmetric IFF M is a symmetric Matrix: M = M7

» R is antisymmetric if Mj; = 0 or M;; = 0 for all i # ]

Combining Connection Matrices — Join

» Definition: The join of two matrices, M; and M,, denoted
My V My, is the component—wise Boolean "or" of the two
matrices.

» Fact: If My is the connection matrix for Ry, and M, is the
connection matrix for R, then the join of My and M,
My vV My, is the connection matrix for R U Ry

Combining Connection Matrices — Meet

» Definition: The meet of two matrices, M; and M, denoted
My A My, is the component—wise Boolean "and" of the two
matrices.

» Fact: If My is the connection matrix for Ry, and M, is the
connection matrix for Ry, then the meet of M; and My,
M; A My, is the connection matrix for Ry N Ry




Finding Connection Matrix Combinations

Given the connection matrix for two relations, how does one find
the connection matrix for:

» The complement: (A x A) — R
» The relative complement: R — R and R, — Ry

» The symmetric difference: R ® R, = (R1 — R2) U(R2 — Ry)

The Composition

» Definition: Let M; be the connection matrix for Ry, and M, be
the connection matrix for R».

Then the Boolean product of these two matrices, denoted
M; ® My, is the connection matrix for the composition of R
with Ry, Roo Ry

(M1 ® Ma)jj = Vi1 [(M1)ix A (M2)i5)]

» Why? In order for there to be an arc < x,z > in the composition,
then there must be an arc < x,y > in Ry and anarc < y,z > in
R, for some y.

Notes on Composition

» The Boolean product checks all possible y's. If at least one such
path exists, that is sufficient.

» The matrices My and M, must be conformable: the number of
columns of M; must equal the number of rows of M,.

Composition Example — R, o Ry

A B C
1 e 1

2

3 02
3 (]

» If My is mx nand My is n X p, then My ® My is mx p 0100 00 01
M=0001| mM=93| mM®M,=(01
0100 01 01

Digraphs

(M1 ®@ M2)12 = [(M1)1u1 A (M2)12] V
[(M1)12 A (M2)22] vV
[(M1)13 A (M2)32] Vv
[(M1)1a A (Ma)a2] Vv

= [0AOQV[IAL]V[OAQlV[OAT]
=1
» There is an arc in Ry from node 1 in A to node 2 in B

» There is an arc in Ry from node 2 in B to node 2 in C

» Hence, there is an arc in Ry o Ry from node 1 in A to node 2 in C.

v

A useful result: Mgn = (Mg)"

Given the digraphs for Ry and R», describe how to find the
digraphs for:

v

Union: R, UR;

» Intersection: R, N Ry

» Relative Complement: R, — R;
» Boolean Product: R, ® Ry

» Complement: AXA— Ry

» Symmetric Difference: Ry @ R>




Section 8.5 — Equivalence Relations

Wherein we define new types of important relations by grouping
properties of relations together.

Definition: A relation R on a set A is an equivalence relation
IFF R is:

» reflexive
» symmetric, and

> transitive

Equivalence Relations in Digraphs

Equivalence relations are easily recognized in digraphs

» The set of all elements related to a particular element forms a
subgraph in which all self-loops and arcs are present between the
included vertices.

> l.e., the digraph (or subdigraph) representing the subset will be a
complete digraph (or subdigraph).

» The number of such subsets is called the rank of the equivalence
relation.

All Equivalence Relations on a Set with 3 Elements

rank =3 o. b

s ot

rank = 2

0

Co o

rank = 2

Equivalence Classes

» Each complete subset is called an equivalence class.

> A bracket around an element means the equivalence class in
which the element lies.

[XI={yl <x,y >€ R}
» The element in the bracket is called a representative of the
equivalence class — we could have chosen any element in that

class.

» Three ways to say "in the same equivalence class”:

aRb [al=[6  [&n[b]£0 |

Example — Equivalence Classes
C}a b
c :

[a] ={a,c}, [c]={a,c}, [b]={b}
rank = 2

Partitions

» Definition: Let 51,5;,...,S, be a collection of subsets of A.
Then the collection forms a partition of A if the subsets are
non—empty, disjoint, and exhaust A.

| si#0 NS =0ifi#) Us =A




Examples

Theorem. The equivalence classes of an equivalence relation R 1. The set of integers such that aRb IFF a = b ora = —b

partition the set A into disjoint nonempty subsets whose union is .
the entire set 2. The natural numbers mod any integer:

For example, N mod 3 divides the natural numbers into 3

equivalence classes: [0]3, [1]3, [2]3
The partition is denoted A/R and is called:

. a
» the quotient set or Q

6
> the partition of A induced by R, or /

» A modulo R

[a] ={a}, [b]={b,c}, [c]={b,c}
rank = 2

Review — R C Ax A

Theorem. Let R be an equivalence relation on A. Then either > reflexive: (2,2) €R V a€ A

[a] = [£] » symmetric: (b,a) € R+ (a,b) € R for a,be A
or
[a] N 6] =0 > antisymmetric:
Why? (b,a) € R and (a,b) € R, then a=b for a,bc A
> transitive:

(a,b) € R and (b,c) € R, then (a,c) € R for a,b,ce A

Transitive Closure

Theorem. If Ry and R, are equivalence relations on A, then
R1 N Ry is an equivalence relation on A.

v

A path in a digraph is a sequence of connected edges.

» A path has length n, where n is the number of edges in the path. Proof outline:
It would suffice to show that the intersection of:
> A circuit or cycle is a path that begins and ends at the same
vertex. > reflexive relations is reflexive
» The connectivity relation R* is the set of all pairs <a, b> such > symmetric relations is symmetric, and

that there is a path between a and b in the relation R.

.. . » transitive relations is transitive
This is also called the transitive closure of R.




Reflexive, Symmetric, Transitive Closure

Definition. Let R be a relation on A. Then the reflexive,
symmetric, transitive closure of R, denoted tsr(R), is an Theorem. tsr(R) is an equivalence relation.
equivalence relation induced by R on A.

Example: Proof. We must be careful and show that tsr(R) is still symmetric

and reflexive.

a b a b
o H Ce T/J
: : '/_ Q > Since we only add arcs (rather than delete arcs) when computing
d d closures, it must be that tsr(R) is reflexive since all loops
c c < x,x > on the digraph must be present when constructing r(R).
R tsr(R), rank = 2

A =[a]U[b] = {a}\U {b, c, d}
A/R={{a}, {b, c,d}}

> If there is an arc < x,y >, then the symmetric closure of r(R)
ensures there is an arc < y,x >.

» We may now argue that if we construct the transitive closure of
sr(R) and we add an edge < x, z > because there is a path from
X to z, then there must also exist a path from z to x, and hence
we also must add an edge < z,x >. Hence the transitive closure
of sr(R) is symmetric.




